

SYLLABUS

Module –I

Fundamentals of C : Algorithms an Flow chart, C as a middle level language, Structure of C program, Character set,

Identifiers, keyword, data types, Constants and variables, statements, expression, operators, precedence of operators,

Input-output, Assignments, control structures decision making and branching.

Module –II

Arrays, Functions and Structure and Union : functions, user defined vs. standard functions, formal vs. actual

arguments, function – category, function prototypes, parameter passing, recursion, Array: 1-D ,2-D, Matrix Operations,

String, Structure, Union

Module –III

Pointers & Dynamic Memory Allocation : pointer arithmetic, passing parameters, Call by Value vs. Call by Reference,

pointer to pointer, pointer to structure, pointer to function, dynamic memory allocation

Module –IV

Data Structures : pointer Introduction to Data structure, Linear Linked list : Creation, Insertion, Deletion, Stack, Stack

applications(Infix to postfix), Queue(Linear & Circular)

Module –V

Tree, Introduction to sorting & Searching : point Binary tree, Binary Search Tree, Sorting(Bubble sort, Quick sort),

Searching(Linear search, Binary search)

Lecture Note: 1

Introduction to C

C is a programming language developed at AT & T’s Bell Laboratories of USA

in 1972. It was designed and written by a man named Dennis Ritchie. In the late

seventies C began to replace the more familiar languages of that time like PL/I,

ALGOL, etc

ANSI C standard emerged in the early 1980s, this book was split into two

titles: The original was still called Programming in C, and the title that covered

ANSI C was called Programming in ANSI C. This was done because it took

several years for the compiler vendors to release their ANSI C compilers and for

them to become ubiquitous. It was initially designed for programming UNIX

operating system. Now the software tool as well as the C compiler is written in C.

Major parts of popular operating systems like Windows, UNIX, Linux is still

written in C. This is because even today when it comes to performance (speed of

execution) nothing beats C. Moreover, if one is to extend the operating system to

work with new devices one needs to write device driver programs. These

programs are exclusively written in C. C seems so popular is because it is reliable,

simple and easy to use. often heard today is – “C has been already superceded

by languages like C++, C# and Java.

Program

There is a close analogy between learning English language and learning C

language. The classical method of learning English is to first learn the alphabets

used in the language, then learn to combine these alphabets to form words, which

in turn are combined to form sentences and sentences are combined to form

paragraphs. Learning C is similar and easier. Instead of straight-away learning how

to write programs, we must first know what alphabets, numbers and special

symbols are used in C, then how using them constants, variables and keywords are

constructed, and finally how are these combined to form an instruction. A group

of instructions would be combined later on to form a program.

So a computer program is just a collection of the instructions necessary to solve a

specific problem. The basic operations of a computer system form what is known

as the computer’s instruction set. And the approach or method that is used to solve

the problem is known as an algorithm.

So for as programming language concern these are of two types.

1) Low level language

2) High level language

LOW LEVEL LANGUAGE

Low level languages are machine level and assembly level language. In

machine level language computer only understand digital numbers i.e. in the formof 0

and 1. So, instruction given to the computer is in the form binary digit, whichis

difficult to implement instruction in binary code. This type of program is not portable,

difficult to maintain and also error prone. The assembly language is on other hand

modified version of machine level language. Where instructions are given in English

like word as ADD, SUM, MOV etc. It is easy to write and understand but not

understand by the machine. So the translator used here is assembler to translate into

machine level. Although language is bit easier, programmer has to know low level

details related to low level language. In the assembly level language the data are stored

in the computer register, which variesfor different computer. Hence it is not portable.

High level language:

These languages are machine independent, means it is portable. The language in

this category is Pascal, Cobol, Fortran etc. High level languages are understood by

the machine. So it need to translate by the translator into machine level. A

translator is software which is used to translate high level language as well as low

level language in to machine level language.

Three types of translator are there: Compiler, Interpreter,Assembler

Compiler and interpreter are used to convert the high level language into machine

level language. The program written in high level language is known as source

program and the corresponding machine level language program is called as object

program. Both compiler and interpreter perform the same task but there working is

different. Compiler read the program at-a-time and searches the error and lists

them. If the program is error free then it is converted into object program. When

program size is large then compiler is preferred. Whereas interpreter read only one

line of the source code and convert it to object code. If it check error, statement by

statement and hence of take more time.

Integrated Development Environments (IDE)

The process of editing, compiling, running, and debugging programs is often

managed by a single integrated application known as an Integrated Development

Environment, or IDE for short. An IDE is a windows-based program that allows us

to easily manage large software programs, edit files in windows, and compile, link,

run, and debug programs.

On Mac OS X, CodeWarrior and Xcode are two IDEs that are used by many

programmers. Under Windows, Microsoft Visual Studio is a good example of a

popular IDE. Kylix is a popular IDE for developing applications under Linux.

Most IDEs also support program development in several different programming

languages in addition to C, such as C# and C++.

Lecture Note: 2

Structure of C Language program

1) Comment line

2) Preprocessor directive

3) Global variable declaration

4) main function()

{

Local variables;

Statements;

}

User defined function

}

}

Comment line

It indicates the purpose of the program. It is represented as

/*……………………………..*/

Comment line is used for increasing the readability of the program. It is useful in

explaining the program and generally used for documentation. It is enclosed within

the decimeters. Comment line can be single or multiple line but should not be

nested. It can be anywhere in the program except inside string constant & character

constant.

Preprocessor Directive:

#include<stdio.h> tells the compiler to include information about the standard

input/output library. It is also used in symbolic constant such as #define PI

3.14(value). The stdio.h (standard input output header file) contains definition

&declaration of system defined function such as printf(), scanf(), pow() etc.

Generally printf() function used to display and scanf() function used to read value

Global Declaration:

This is the section where variable are declared globally so that it can be access by

all the functions used in the program. And it is generally declared outside the

function :

main()

It is the user defined function and every function has one main() function from

where actually program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is

placed in the first position.

Syntax :

main()

{

……..

……..

……..

}

The main() function return value when it declared by data type as

int main()

{

return 0

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

}

The main function does not return any value when void (means null/empty) as

void main(void) or void main()

{

printf (“C language”);

}

Output: C language

The program execution start with opening braces and end with closing brace.

And in between the two braces declaration part as well as executable part is

mentioned. And at the end of each line, the semi-colon is given which indicates

statement termination.

/*First c program with return statement*/

#include <stdio.h>

int main (void)

{

printf ("welcome to c Programming language.\n");

return 0;

}

Output: welcome to c programming language.

Steps for Compiling and executing the Programs

A compiler is a software program that analyzes a program developed in a particular

computer language and then translates it into a form that is suitable for execution

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

on a particular computer system. Figure below shows the steps that are involved in

entering, compiling, and executing a

computer program developed in the C programming language and the typical Unix

commands that would be entered from the command line.

Step 1: The program that is to be compiled is first typed into a file on the

computer system. There are various conventions that are used for naming files,

typically be any name provided the last two characters are “.c” or file with

extension .c. So, the file name prog1.c might be a valid filename for a C program.

A text editor is usually used to enter the C program into a file. For example, vi is a

popular text editor used on Unix systems. The program that is entered into the file

is known as the source program because it represents the original form of the

program expressed in the C language.

Step 2: After the source program has been entered into a file, then proceed to have

it compiled. The compilation process is initiated by typing a special command on

the system. When this command is entered, the name of the file that contains the

source program must also be specified. For example, under Unix, the command to

initiate program compilation is called cc. If we are using the popular GNU C

compiler, the command we use is gcc.

Typing the line

gcc prog1.c or cc prog1.c

In the first step of the compilation process, the compiler examines each program

statement contained in the source program and checks it to ensure that it conforms

to the syntax and semantics of the language. If any mistakes are discovered by the

compiler during this phase, they are reported to the user and the compilation

process ends right there. The errors then have to be corrected in the source program

(with the use of an editor), and the compilation process must be restarted. Typical

errors reported during this phase of compilation might be due to an expression that

has unbalanced parentheses (syntactic error), or due to the use of a variable that is

not “defined” (semantic error).

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Step 3: When all the syntactic and semantic errors have been removed from the

program, the compiler then proceeds to take each statement of the program and

translate it into a “lower” form that is equivalent to assembly language program

needed to perform the identical task.

Step 4: After the program has been translated the next step in the compilation

process is to translate the assembly language statements into actual machine

instructions. The assembler takes each assembly language statement and converts it

into a binary format known as object code, which is then written into another file

on the system. This file has the same name as the source file under Unix, with the

last letter an “o” (for object) instead of a “c”.

Step 5: After the program has been translated into object code, it is ready to be

linked. This process is once again performed automatically whenever the cc or gcc

command is issued under Unix. The purpose of the linking phase is to get the

program into a final form for execution on the computer.

If the program uses other programs that were previously

processed by the compiler, then during this phase the programs are linked together.

Programs that are used from the system’s program library are also searched and

linked together with the object program during this phase.

The process of compiling and linking a program is often called building.

The final linked file, which is in an executable object code format, is stored in

another file on the system, ready to be run or executed. Under Unix, this file is

called a.out by default. Under Windows, the executable file usually has the same

name as the source file, with the c extension replaced by an exe extension.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Step 6: To subsequently execute the program, the command a.out has the effect

of loading the program called a.out into the computer’s memory and initiating its

execution.

When the program is executed, each of the statements of the program is

sequentially executed in turn. If the program requests any data from the user,

known as input, the program temporarily suspends its execution so that the input

can be entered. Or, the program might simply wait for an event, such as a mouse

being clicked, to occur. Results that are displayed by the program, known as

output, appear in a window, sometimes called the console. If the program does not

produce the desired results, it is necessary to go back and reanalyze the program’s

logic. This is known as the debugging phase, during which an attempt is made to

remove all the known problems or bugs from the program. To do this, it will most

likely be necessary to make changes to original source program.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

/*Simple program to add two numbers*/

#include <stdio.h>int

main (void)

{

int v1, v2, sum; //v1,v2,sum are variables and int is data type declared

v1 = 150;

v2 = 25;

sum = v1 + v2;

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

printf ("The sum of %i and %i is= %i\n", v1, v2, sum);

return 0;

}

Output:

The sum of 150 and 25 is=175

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note-3

Character set

A character denotes any alphabet, digit or special symbol used to represent

information. Valid alphabets, numbers and special symbols allowed in C are

The alphabets, numbers and special symbols when properly combined form

constants, variables and keywords.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Identifiers

Identifiers are user defined word used to name of entities like variables, arrays,

functions, structures etc. Rules for naming identifiers are:
1) name should only consists of alphabets (both upper and lower case), digits

and underscore (_) sign.

2) first characters should be alphabet or underscore

3) name should not be a keyword

4) since C is a case sensitive, the upper case and lower case considered

differently, for example code, Code, CODE etc. are different identifiers.

5) identifiers are generally given in some meaningful name such as value,

net_salary, age, data etc. An identifier name may be long, some implementation

recognizes only first eight characters, most recognize 31 characters. ANSI

standard compiler recognize 31 characters. Some invalid identifiers are 5cb, int,

res#, avg no etc.

Keywords

There are certain words reserved for doing specific task, these words are

known as reserved word or keywords. These words are predefined and always

written in lower case or small letter. These keywords cann’t be used as a variable

name as it assigned with fixed meaning. Some examples are int, short, signed,

unsigned, default, volatile, float, long, double, break, continue, typedef, static,

do, for, union, return, while, do, extern, register, enum, case, goto, struct, char,

auto, const etc.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Data type

Data types refer to an extensive system used for declaring variables or functions of

different types before its use. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted. The value of a

variable can be changed any time.

C has the following 4 types of data types

basic built-in data types: int, float, double, char

Enumeration data type: enum

Derived data type: pointer, array, structure, union

Void data type: void

A variable declared to be of type int can be used to contain integral values

only—that is, values that do not contain decimal places. A variable declared to be

of type float can be used for storing floating- point numbers (values containing

decimal places). The double type is the same as type float, only with roughly twice

the precision. The char data type can be used to store a single character, such as the

letter a, the digit character 6, or a semicolon similarly A variable declared char can

only store character type value.

There are two types of type qualifier in c

Size qualifier: short, long

Sign qualifier: signed, unsigned

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

When the qualifier unsigned is used the number is always positive, and when

signed is used number may be positive or negative. If the sign qualifier is not

mentioned, then by default sign qualifier is assumed. The range of values for

signed data types is less than that of unsigned data type. Because in signed type,

the left most bit is used to represent sign, while in unsigned type this bit is also

used to represent the value. The size and range of the different data types on a 16

bit machine is given below:

Basic data type Data type with type
qualifier

Size
(byte)

Range

char char or signed char
Unsigned char

1

1

-128 to 127

0 to 255

int int or signed int 2 -32768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255
long int or signed long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

float float 4 -3.4E-38 to 3.4E+38

double double 8 1.7E-308 to 1.7E+308

Long double 10 3.4E-4932 to 1.1E+4932

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 4

Constants

Constant is a any value that cannot be changed during program execution. In C,

any number, single character, or character string is known as a constant. A constant

is an entity that doesn’t change whereas a variable is an entity that may change.

For example, the number 50 represents a constant integer value. The character

string "Programming in C is fun.\n" is an example of a constant character string. C

constants can be divided into two major categories:

Primary Constants

Secondary Constants

These constants are further categorized as

Numeric constant

Character constant

String constant

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Numeric constant: Numeric constant consists of digits. It required minimum size

of 2 bytes and max 4 bytes. It may be positive or negative but by default sign is

always positive. No comma or space is allowed within the numeric constant and it

must have at least 1 digit. The allowable range for integer constants is -32768 to

32767. Truly speaking the range of an Integer constant depends upon the compiler.

For a 16-bit compiler like Turbo C or Turbo C++ the range is –32768 to 32767.

For a 32-bit compiler the range would be even greater. Mean by a 16-bit or a 32-

bit compiler, what range of an Integer constant has to do with the type of compiler.

It is categorized a integer constant and real constant. An integer constants are

whole number which have no decimal point. Types of integer constants are:

Decimal constant: 0 ------ 9(base 10)
Octal constant: 0 ------ 7(base 8)

Hexa decimal constant: 0----9, A ----- F(base 16)

In decimal constant first digit should not be zero unlike octal constant first digit

must be zero(as 076, 0127) and in hexadecimal constant first two digit should be

0x/ 0X (such as 0x24, 0x87A). By default type of integer constant is integer but if

the value of integer constant is exceeds range then value represented by integer

type is taken to be unsigned integer or long integer. It can also be explicitly

mention integer and unsigned integer type by suffix l/L and u/U.

Real constant is also called floating point constant. To construct real constant we

must follow the rule of ,
-real constant must have at least one digit.

-It must have a decimal point.

-It could be either positive or negative.

-Default sign is positive.

-No commas or blanks are allowed within a real constant. Ex.: +325.34

426.0
-32.76

To express small/large real constant exponent(scientific) form is used where

number is written in mantissa and exponent form separated by e/E. Exponent can

be positive or negative integer but mantissa can be real/integer type, for example

3.6*105=3.6e+5. By default type of floating point constant is double, it can also be

explicitly defined it by suffix of f/F.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Character constant : Character constant represented as a single character enclosed within

a single quote. These can be single digit, single special symbol or white spaces such as

‘9’,’c’,’$’, ‘ ’ etc. Every character constant has a unique integer like value in machine’s

character code as if machine using ASCII (American standard code forinformation

interchange). Some numeric value associated with each upper and lower case alphabets and

decimal integers are as:

A ------------ Z ASCII value (65-90)

a ------------ z ASCII value (97-122)

0-------------9 ASCII value (48-59)

; ASCII value (59)

String constant

Set of characters are called string and when sequence of characters are

enclosed within a double quote (it may be combination of all kind of symbols) is a

string constant. String constant has zero, one or more than one character and at the

end of the string null character(\0) is automatically placed by compiler. Some

examples are “,sarathina” , “908”, “3”,” ”, “A” etc. In C although same characters

are enclosed within single and double quotes it represents different meaning such

as “A” and ‘A’ are different because first one is string attached with null character

at the end but second one is character constant with its corresponding ASCII value

is 65.

Symbolic constant

Symbolic constant is a name that substitute for a sequence of characters and,

characters may be numeric, character or string constant. These constant are

generally defined at the beginning of the program as

#define name value , here name generally written in

upper case for example

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

#define MAX 10

#define CH ‘b’

#define NAME “sony”

Variables

Variable is a data name which is used to store some data value or symbolic names

for storing program

computations and results. The value of the variable can be change during the

execution. The rule for naming the variables is same as the naming identifier.

Before used in the program it must be declared. Declaration of variables specify its

name, data types and range of the value that variables can store depends upon its

data types.

Syntax:

int a;

char c;

float f;

Variable initialization

When we assign any initial value to variable during the declaration, is called

initialization of variables. When variable is declared but contain undefined value

then it is called garbage value. The variable is initialized with the assignment

operator such as

Data type variable name=constant;

Example: int a=20;

Or int a;

a=20;

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 5

Expressions

An expression is a combination of variables, constants, operators and function call.

It can be arithmetic, logical and relational for example:-

int z= x+y // arithmatic expression

a>b //relational

a==b // logical

func(a, b) // function call

Expressions consisting entirely of constant values are called constant expressions.

So, the expression
121 + 17 - 110

is a constant expression because each of the terms of the expression is a constant

value. But if i were declared to be an integer variable, the expression
180 + 2 – j

would not represent a constant expression.

Operator

This is a symbol use to perform some operation on variables, operands or with the

constant. Some operator required 2 operand to perform operation or Some

required single operation.

Several operators are there those are, arithmetic operator, assignment, increment ,

decrement, logical, conditional, comma, size of , bitwise and others.

1. Arithmatic Operator

This operator used for numeric calculation. These are of either Unary arithmetic

operator, Binary arithmetic operator. Where Unary arithmetic operator required

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

only one operand such as +,-, ++, --,!, tiled. And these operators are addition,

subtraction, multiplication, division. Binary arithmetic operator on other hand

required two operand and its operators are +(addition), -(subtraction),

*(multiplication), /(division), %(modulus). But modulus cannot applied with

floating point operand as well as there are no exponent operator in c.

Unary (+) and Unary (-) is different from addition and subtraction.

When both the operand are integer then it is called integer arithmetic and the result

is always integer. When both the operand are floating point then it is called floating

arithmetic and when operand is of integer and floating point then it is called mix

type or mixed mode arithmetic . And the result is in float type.

2. Assignment Operator

A value can be stored in a variable with the use of assignment operator. The

assignment operator(=) is used in assignment statement and assignment expression.

Operand on the left hand side should be variable and the operand on the right hand

side should be variable or constant or any expression. When variable on the left

hand side is occur on the right hand side then we can avoid by writing the

compound statement. For example,

int x= y;

int Sum=x+y+z;

3. Increment and Decrement

The Unary operator ++, --, is used as increment and decrement which acts upon

single operand. Increment operator increases the value of variable by one

.Similarly decrement operator decrease the value of the variable by one. And these

operator can only used with the variable, but cann't use with expression and

constant as ++6 or ++(x+y+z).

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

It again categories into prefix post fix . In the prefix the value of the variable is

incremented 1st, then the new value is used, where as in postfix the operator is

written after the operand(such as m++,m--).

EXAMPLE

let y=12;

z= ++y;

y= y+1;

z= y;

Similarly in the postfix increment and decrement operator is used in the operation .

And then increment and decrement is perform.

EXAMPLE

let x= 5;

y= x++;

y=x;

x= x+1;

4. Relational Operator

It is use to compared value of two expressions depending on their relation.

Expression that contain relational operator is called relational expression.

Here the value is assign according to true or false value.

a.(a>=b) || (b>20)

b.(b>a) && (e>b)

c. 0(b!=7)

5. Conditional Operator

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

It sometimes called as ternary operator. Since it required three expressions as

operand and it is represented as (? , :).

SYNTAX

exp1 ? exp2 :exp3

Here exp1 is first evaluated. It is true then value return will be exp2 . If false then

exp3.

EXAMPLE

void main()

{

int a=10, b=2

int s= (a>b) ? a:b;

printf(“value is:%d”);

}

Output:

Value is:10

6. Comma Operator

Comma operator is use to permit different expression to be appear in a situation

where only one expression would be used. All the expression are separator by

comma and are evaluated from left to right.

EXAMPLE

int i, j, k, l;

for(i=1,j=2;i<=5;j<=10;i++;j++)

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

7. Sizeof Operator

Size of operator is a Unary operator, which gives size of operand in terms of byte

that occupied in the memory. An operand may be variable, constant or data type

qualifier.

Generally it is used make portable program(program that can be run on different

machine) . It determines the length of entities, arrays and structures when their size

are not known to the programmer. It is also use to allocate size of memory

dynamically during execution of the program.

EXAMPLE

main()

{

int sum;

float f;

printf("%d%d" ,size of(f), size of (sum));

printf("%d%d", size of(235 L), size of(A));

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 6

8. Bitwise Operator

Bitwise operator permit programmer to access and manipulate of data at bit level.

Various bitwise operator enlisted are

one's complement (~)

bitwise AND (&)

bitwise OR (|)

bitwise XOR (^)

left shift (<<)

right shift (>>)

These operator can operate on integer and character value but not on float and

double. In bitwise operator the function showbits() function is used to display the

binary representation of any integer or character value.

In one's complement all 0 changes to 1 and all 1 changes to 0. In the bitwise OR its

value would obtaining by 0 to 2 bits.

As the bitwise OR operator is used to set on a particular bit in a number. Bitwise

AND the logical AND.

It operate on 2operands and operands are compared on bit by bit basic. And hence

both the operands are of same type.

Logical or Boolean Operator

Operator used with one or more operand and return either value zero (for false) or

one (for true). The operand may be constant, variables or expressions. And the

expression that combines two or more expressions is termed as logical expression.

C has three logical operators :

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Operator Meaning

&& AND
|| OR

! NOT

Where logical NOT is a unary operator and other two are binary operator. Logical

AND gives result true if both the conditions are true, otherwise result is false. And

logial OR gives result false if both the condition false, otherwise result is true.

Precedence and associativity of operators

Operators Description Precedence level Associativity

() function call 1 left to right

[] array subscript

→

.

arrow operator

dot operator

+

-

++

- -

!

~

*

&

(data type)

sizeof

unary plus

unary minus

increment

decrement

logical not

1’s complement

indirection

address

type cast

size in byte

2 right to left

*

/

%

multiplication

division

modulus

3 left to right

+ addition 4 left to right

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

- subtraction

<<

>>

left shift

right shift
5 left to right

<=

>=

<

>

less than equal to

greater than equal to

less than
greater than

6 left to right

==

!=

equal to

not equal to

7 left to right

& bitwise AND 8 left to right

^ bitwise XOR 9 left to right

| bitwise OR 10 left to right

&& logical AND 11

|| logical OR 12

?: conditional operator 13

=, *=, /=, %= assignment operator 14 right to left

&=, ^=, <<=

>>=

, comma operator 15

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 7

Control Statement

Generally C program statement is executed in a order in which they appear

in the program. But sometimes we use decision making condition for execution

only a part of program, that is called control statement. Control statement defined

how the control is transferred from one part to the other part of the program.

Thereare several control statement like if...else, switch, while, do. while, for loop,

break, continue, goto etc.

Loops in C

Loop:-it is a block of statement that performs set of instructions. In loops

Repeating particular portion of the program either a specified number of time or

until a particular no of condition is being satisfied.

There are three types of loops in c

1. While loop

2. do while loop

3. for loop

While loop

Syntax:-

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

while(condition)

{

Statement 1;

Statement 2;

Or while(test
condition)

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

/* wap to print 5 times welcome to C” */

#include<stdio.h>

void main()

{

int p=1;

While(p<=5)

{

printf(“Welcome to C\n”);

P=p+1;

}

}

The test condition may be any expression .when we want to do something a fixed no

of times but not known about the number of iteration, in a program then while loop is

used.

Here first condition is checked if, it is true body of the loop is executed else, If

condition is false control will be come out of loop.

Example:-

Output: Welcome to C

Welcome to C

Welcome to C

Welcome to C

Welcome to C

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Do

{

Statement;

}

while(condition);

So as long as condition remains true statements within the body of while loop will

get executed repeatedly.

do while loop

This (do while loop) statement is also used for looping. The body of this loop may

contain single statement or block of statement. The syntax for writing this

statement is:

Syntax:-

Example:-

#include<stdio.h>

void main()

{

int X=4;

do

{

Printf(“%d”,X);

X=X+1;

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

}whie(X<=10);

Printf(“ ”);

}

Output: 4 5 6 7 8 9 10

Here firstly statement inside body is executed then condition is checked. If the

condition is true again body of loop is executed and this process continue until the

condition becomes false. Unlike while loop semicolon is placed at the end of

while.

There is minor difference between while and do while loop, while loop test the

condition before executing any of the statement of loop. Whereas do while loop

test condition after having executed the statement at least one within the loop.

If initial condition is false while loop would not executed it’s statement on other

hand do while loop executed it’s statement at least once even If condition fails for

first time. It means do while loop always executes at least once. Notes:

Do while loop used rarely when we want to execute a loop at least once.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 8

for loop

In a program, for loop is generally used when number of iteration are known in

advance. The body of the loop can be single statement or multiple statements. Its

syntax for writing is:

Syntax:-

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

for(initialized counter; test counter; update counter)

{

Statement;

}

Or

Here exp1 is an initialization expression, exp2 is test expression or condition and

exp3 is an update expression. Expression 1 is executed only once when loop

started and used to initialize the loop variables. Condition expression generally

uses relational and logical operators. And updation part executed only when after

body of the loop is executed.

Example:-

void main()

{

int i;

for(i=1;i<10;i++)

{

for(exp1;exp2;exp3)

{

Statement;

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Printf(“ %d ”, i);

}

}

Output:-1 2 3 4 5 6 7 8 9

Nesting of loop

When a loop written inside the body of another loop then, it is known as nesting of

loop. Any type of loop can be nested in any type such as while, do while, for. For

example nesting of for loop can be represented as :

void main()

{

int i,j;

for(i=0;i<2;i++)

for(j=0;j<5; j++)

printf(“%d %d”, i, j);

}

Output: i=0

j=0 1 2 3 4

i=1

j=0 1 2 3 4

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Break statement(break)

Sometimes it becomes necessary to come out of the loop even before loop

condition becomes false then break statement is used. Break statement is used

inside loop and switch statements. It cause immediate exit from that loop in which

it appears and it is generally written with condition. It is written with the keyword

as break. When break statement is encountered loop is terminated and control is

transferred to the statement, immediately after loop or situation where we want to

jump out of the loop instantly without waiting to get back to conditional state.

When break is encountered inside any loop, control automatically passes to the

first statement after the loop. This break statement is usually associated with if

statement.

Example :

void main()

{

int j=0;

for(;j<6;j++)

if(j==4)

break;

}

Output:

0 1 2 3

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Continue statement (key word continue)

Continue statement is used for continuing next iteration of loop after skipping

some statement of loop. When it encountered control automatically passes

through the beginning of the loop. It is usually associated with the if statement. It is

useful when we want to continue the program without executing any part of the

program.

The difference between break and continue is, when the break encountered loop is

terminated and it transfer to the next statement and when continue is encounter

control come back to the beginning position.

In while and do while loop after continue statement control transfer to the test

condition and then loop continue where as in, for loop after continue control

transferred to the updating expression and condition is tested.

Example:-

void main()

{

int n;

for(n=2; n<=9; n++)

{

if(n==4)

continue;

printf(“%d”, n);

}

}

Printf(“out of loop”);

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Output: 2 3 5 6 7 8 9 out of loop

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 9

if statement

Statement execute set of command like when condition is true and its syntax is

If (condition)

Statement;

The statement is executed only when condition is true. If the if statement body is

consists of several statement then better to use pair of curly braces. Here in case

condition is false then compiler skip the line within the if block.

void main()

{

int n;

printf (“ enter a number:”);

scanf(“%d”,&n);

If (n>10)

Printf(“ number is grater”);

}

Output:

Enter a number:12

Number is greater

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

if…..else ... Statement

it is bidirectional conditional control statement that contains one condition & two

possible action. Condition may be true or false, where non-zero value regarded as

true & zero value regarded as false. If condition are satisfy true, then a single or

block of statement executed otherwise another single or block of statement is

executed.

Its syntax is:-

if (condition)

{

Statement1;

Statement2;

}

else

{

Statement1;

Statement2;

}

Else statement cannot be used without if or no multiple else statement are allowed

within one if statement. It means there must be a if statement with in an else

statement.

Example:-

/* To check a number is eve or odd */

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

void main()

{

int n;

printf (“enter a number:”);

sacnf (“%d”, &n);

If (n%2==0)

printf (“even number”);

else

printf(“odd number”);

}

Output: enter a number:121

odd number

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 10

Nesting of if …else

When there are another if else statement in if-block or else-block, then it is called

nesting of if-else statement.

Syntax is :-

if (condition)

{

If (condition)

Statement1;

else

statement2;

}

Statement3;

If….else LADDER

In this type of nesting there is an if else statement in every else part except the last

part. If condition is false control pass to block where condition is again checked

with its if statement.

Syntax is :-

if (condition)

Statement1;

else if (condition)

statement2;

else if (condition)

statement3;

else

statement4;

This process continue until there is no if statement in the last block. if one of the

condition is satisfy the condition other nested “else if” would not executed.

But it has disadvantage over if else statement that, in if else statement whenever

the condition is true, other condition are not checked. While in this case, all

condition are checked.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 11

ARRAY

Array is the collection of similar data types or collection of similar entity stored in

contiguous memory location. Array of character is a string. Each data item of an

array is called an element. And each element is unique and located in separated

memory location. Each of elements of an array share a variable but each element

having different index no. known as subscript.

An array can be a single dimensional or multi-dimensional and number of

subscripts determines its dimension. And number of subscript is always starts with

zero. One dimensional array is known as vector and two dimensional arrays are

known as matrix.

ADVANTAGES: array variable can store more than one value at a time where

other variable can store one value at a time.

Example:

int arr[100];

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

int mark[100];

DECLARATION OF AN ARRAY :

Its syntax is :

Data type array name [size];

int arr[100];

int mark[100];

int a[5]={10,20,30,100,5}

The declaration of an array tells the compiler that, the data type, name of the array,

size of the array and for each element it occupies memory space. Like for int data

type, it occupies 2 bytes for each element and for float it occupies 4 byte for each

element etc. The size of the array operates the number of elements that can be

stored in an array and it may be a int constant or constant int expression.

We can represent individual array as :

int ar[5];

ar[0], ar[1], ar[2], ar[3], ar[4];

Symbolic constant can also be used to specify the size of the array as:

#define SIZE 10;

INITIALIZATION OF AN ARRAY:

After declaration element of local array has garbage value. If it is global or static

array then it will be automatically initialize with zero. An explicitly it can be

initialize that

Data type array name [size] = {value1, value2, value3…}

Example:

in ar[5]={20,60,90, 100,120}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Array subscript always start from zero which is known as lower bound and upper

value is known as upper bound and the last subscript value is one less than the size

of array. Subscript can be an expression i.e. integer value. It can be any integer,

integer constant, integer variable, integer expression or return value from

functional call that yield integer value.

So if i & j are not variable then the valid subscript are

ar [i*7],ar[i*i],ar[i++],ar[3];

The array elements are standing in continuous memory locations and the

amount of storage required for hold the element depend in its size & type.

Total size in byte for 1D array is:

Total bytes=size of (data type) * size of array.

Example : if an array declared is:

int [20];

Total byte= 2 * 20 =40 byte.

ACCESSING OF ARRAY ELEMENT:

/*Write a program to input values into an array and display them*/

#include<stdio.h>

int main()

{

int arr[5],i;

for(i=0;i<5;i++)

{

printf(“enter a value for arr[%d] \n”,i);

scanf(“%d”,&arr[i]);

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

printf(“the array elements are: \n”);

for (i=0;i<5;i++)

{

printf(“%d\t”,arr[i]);

}

return 0;

}

OUTPUT:

Enter a value for arr[0] = 12

Enter a value for arr[1] =45

Enter a value for arr[2] =59

Enter a value for arr[3] =98

Enter a value for arr[4] =21

The array elements are 12 45 59 98 21

Example: From the above example value stored in an array are and occupy its

memory addresses 2000, 2002, 2004, 2006, 2008 respectively.

a[0]=12, a[1]=45, a[2]=59, a[3]=98, a[4]=21

ar[0] ar[1] ar[2] ar[3] ar[4]

2000 2002 2004 2006

 2008

12 45 59 98 21

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Example 2:

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

/* Write a program to add 10 array elements */

#include<stdio.h>

void main()

{

int i ;

int arr [10];

int sum=o;

for (i=0; i<=9; i++)

{

printf (“enter the %d element \n”, i+1);

scanf (“%d”, &arr[i]);

}

for (i=0; i<=9; i++)

{

sum = sum + a[i];

}

printf (“the sum of 10 array elements is %d”, sum);

}

OUTPUT:

Enter a value for arr[0] =5

Enter a value for arr[1] =10

Enter a value for arr[2] =15

Enter a value for arr[3] =20

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Enter a value for arr[4] =25

Enter a value for arr[5] =30

Enter a value for arr[6] =35

Enter a value for arr[7] =40

Enter a value for arr[8] =45

Enter a value for arr[9] =50

Sum = 275

while initializing a single dimensional array, it is optional to specify the size of

array. If the size is omitted during initialization then the compiler assumes the size

of array equal to the number of initializers.

For example:-

int marks[]={99,78,50,45,67,89};

If during the initialization of the number the initializers is less then size of array,

then all the remaining elements of array are assigned value zero .

For example:-

int marks[5]={99,78};

Here the size of the array is 5 while there are only two initializers so After this

initialization, the value of the rest elements are automatically occupied by zeros

such as

Marks[0]=99 , Marks[1]=78 , Marks[2]=0, Marks[3]=0, Marks[4]=0

Again if we initialize an array like

int array[100]={0};

Then the all the element of the array will be initialized to zero. If the number of

initializers is more than the size given in brackets then the compiler will show an

error.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

For example:-

int arr[5]={1,2,3,4,5,6,7,8};//error

we cannot copy all the elements of an array to another array by simply assigning it

to the other array like, by initializing or declaring as

int a[5] ={1,2,3,4,5};

int b[5];

b=a;//not valid

(note:-here we will have to copy all the elements of array one by one, using for

loop.)

Single dimensional arrays and functions

/*program to pass array elements to a function*/

#include<stdio.h>

void main()

{

int arr[10],i;

printf(“enter the array elements\n”);

for(i=0;i<10;i++)

{

scanf(“%d”,&arr[i]);

check(arr[i]);

}

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

void check(int num)

{

if(num%2=0)

{

printf(”%d is even \n”,num);

}

else

{

printf(”%d is odd \n”,num);

}

}

Lecture Note: 12

Two dimensional arrays

Two dimensional array is known as matrix. The array declaration in both the array

i.e.in single dimensional array single subscript is used and in two dimensional

array two subscripts are is used.

Its syntax is

Data-type array name[row][column];

Or we can say 2-d array is a collection of 1-D array placed one below the other.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Total no. of elements in 2-D array is calculated as row*column

Example:-

int a[2][3];

Total no of elements=row*column is 2*3 =6

It means the matrix consist of 2 rows and 3 columns

For example:-

20 2 7

8 3 15

Positions of 2-D array elements in an array are as below

00 01 02

10 11 12

a [0][0] a [0][0] a [0][0] a [0][0] a [0][0] a [0][0]

20 2 7 8 3 15

2000 2002 2004 2006 2008

Accessing 2-d array /processing 2-d arrays

For processing 2-d array, we use two nested for loops. The outer for loop

corresponds to the row and the inner for loop corresponds to the column.

For example

int a[4][5];

for reading value:-

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

for(i=0;i<4;i++)

{

for(j=0;j<5;j++)

{

scanf(“%d”,&a[i][j]);

}

}

For displaying value:-

for(i=0;i<4;i++)

{

for(j=0;j<5;j++)

{

printf(“%d”,a[i][j]);

}

}

Initialization of 2-d array:

array can be initialized in a way similar to that of 1-D array. for example:-int

mat[4][3]={11,12,13,14,15,16,17,18,19,20,21,22};

These values are assigned to the elements row wise, so the values of

elements after this initialization are

Mat[0][0]=11, Mat[1][0]=14, Mat[2][0]=17 Mat[3][0]=20

Mat[0][1]=12, Mat[1][1]=15, Mat[2][1]=18 Mat[3][1]=21

Mat[0][2]=13, Mat[1][2]=16, Mat[2][2]=19 Mat[3][2]=22

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

While initializing we can group the elements row wise using inner braces.

for example:-

int mat[4][3]={{11,12,13},{14,15,16},{17,18,19},{20,21,22}};

And while initializing , it is necessary to mention the 2nd dimension where 1st

dimension is optional.

int mat[][3];

int mat[2][3];

int mat[][];

int mat[2][]; invalid

If we initialize an array as

int mat[4][3]={{11},{12,13},{14,15,16},{17}};

Then the compiler will assume its all rest value as 0,which are not defined.

Mat[0][0]=11, Mat[1][0]=12, Mat[2][0]=14, Mat[3][0]=17

Mat[0][1]=0, Mat[1][1]=13, Mat[2][1]=15 Mat[3][1]=0

Mat[0][2]=0, Mat[1][2]=0, Mat[2][2]=16, Mat[3][2]=0

In memory map whether it is 1-D or 2-D, elements are stored in one

contiguous manner.

We can also give the size of the 2-D array by using symbolic constant

Such as

#define ROW 2;

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

#define COLUMN 3;

int mat[ROW][COLUMN];

String

Array of character is called a string. It is always terminated by the NULL

character. String is a one dimensional array of character.

We can initialize the string as

char name[]={‘j’,’o’,’h’,’n’,’\o’};

Here each character occupies 1 byte of memory and last character is always NULL

character. Where ’\o’ and 0 (zero) are not same, where ASCII value of ‘\o’ is 0

and ASCII value of 0 is 48. Array elements of character array are also stored in

contiguous memory allocation.

From the above we can represent as;

J o h N ‘\o’

The terminating NULL is important because it is only the way that the

function that work with string can know, where string end.

String can also be initialized as;

char name[]=”John”;

Here the NULL character is not necessary and the compiler will assume it

automatically.

String constant (string literal)

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

A string constant is a set of character that enclosed within the double quotes

and is also called a literal. Whenever a string constant is written anywhere in a

program it is stored somewhere in a memory as an array of characters terminated

by a NULL character (‘\o’).

Example – “m”

“Tajmahal”

“My age is %d and height is %f\n”

The string constant itself becomes a pointer to the first character in array.

Example-char crr[20]=”Taj mahal”;

1000 1001 1002 1003 1004 1005 1006 1007 100 1009

T a j M A H a l \o

It is called base address.

Lecture Note: 13

String library function

There are several string library functions used to manipulate string and the

prototypes for these functions are in header file “string.h”. Several string functions

are

strlen()

This function return the length of the string. i.e. the number of characters in the

string excluding the terminating NULL character.

It accepts a single argument which is pointer to the first character of the string.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

For example-

strlen(“suresh”);

It return the value 6.

In array version to calculate legnth:-

int str(char str[])

{

int i=0;

while(str[i]!=’\o’)

{

i++;

}

return i;

}

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str[50];

print(”Enter a string:”);

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

gets(str);

printf(“Length of the string is %d\n”,strlen(str));

}

Output:

Enter a string: C in Depth

Length of the string is 8

strcmp()

This function is used to compare two strings. If the two string match, strcmp()

return a value 0 otherwise it return a non-zero value. It compare the strings

character by character and the comparison stops when the end of the string is

reached or the corresponding characters in the two string are not same.

strcmp(s1,s2)

return a value:

<0 when s1<s2

=0 when s1=s2

>0 when s1>s2

The exact value returned in case of dissimilar strings is not defined. We only know

that if s1<s2 then a negative value will be returned and if s1>s2 then a positive

value will be returned.

For example:

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

/*String comparison................................. */

#include<stdio.h>

#include<string.h>

void main()

{

{

}

else

{

}

}

char str1[10],str2[10];

printf(“Enter two strings:”);

gets(str1);

gets(str2);

if(strcmp(str1,str2)==0)

printf(“String are same\n”);

printf(“String are not same\n”);

strcpy()

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

This function is used to copying one string to another string. The function

strcpy(str1,str2) copies str2 to str1 including the NULL character. Here str2 is the

source string and str1 is the destination string.

The old content of the destination string str1 are lost. The function returns a pointer

to destination string str1.

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str1[10],str2[10];

printf(“Enter a string:”);

scanf(“%s”,str2);

strcpy(str1,str2);

printf(“First string:%s\t\tSecond string:%s\n”,str1,str2);

strcpy(str,”Delhi”);

strcpy(str2,”Bangalore”);

printf(“First string :%s\t\tSecond string:%s”,str1,str2);

strcat()

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

This function is used to append a copy of a string at the end of the other string. If

the first string is “”Purva” and second string is “Belmont” then after using this

function the string becomes “PusvaBelmont”. The NULL character from str1 is

moved and str2 is added at the end of str1. The 2nd string str2 remains unaffected.

A pointer to the first string str1 is returned by the function.

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str1[20],str[20];

printf(“Enter two strings:”);

gets(str1);

gets(str2);

strcat(str1,str2);

printf(“First string:%s\t second string:%s\n”,str1,str2);

strcat(str1,”-one”);

printf(“Now first string is %s\n”,str1);

}

Output

Enter two strings: data

Base

First string: database second string: database

` Now first string is: database-one

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 14

FUNCTION

A function is a self contained block of codes or sub programs with a set of

statements that perform some specific task or coherent task when it is called.

It is something like to hiring a person to do some specific task like, every six

months servicing a bike and hand over to it.

Any ‘C’ program contain at least one function i.e main().

There are basically two types of function those are

1. Library function

2. User defined function

The user defined functions defined by the user according to its requirement

System defined function can’t be modified, it can only read and can be used.

These function are supplied with every C compiler

Source of these library function are pre complied and only object code get used by

the user by linking to the code by linker

Here in system defined function description:

Function definition : predefined, precompiled, stored in the library

Function declaration : In header file with or function prototype.

Function call : By the programmer

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

User defined function

Syntax:-

Return type name of function (type 1 arg 1, type2 arg2, type3 arg3)

Return type function name argument list of the above syntax

So when user gets his own function three thing he has to know, these are.

Function declaration

Function definition

Function call

These three things are represented like

int function(int, int, int); /*function declaration*/

main() /* calling function*/

{

function(arg1,arg2,arg3);

}

int function(type 1 arg 1,type2 arg2,type3, arg3) /*function definition/*

{

Local variable declaration;

Statement;

Return value;

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Function declaration:-

Function declaration is also known as function prototype. It inform the compiler

about three thing, those are name of the function, number and type of argument

received by the function and the type of value returned by the function.

While declaring the name of the argument is optional and the function prototype

always terminated by the semicolon.

Function definition:-

Function definition consists of the whole description and code of the function.

It tells about what function is doing what are its inputs and what are its out put

It consists of two parts function header and function body

Syntax:-

return type function(type 1 arg1, type2 arg2, type3 arg3) /*function header*/

{

Local variable declaration;

Statement 1;

Statement 2;

Return value

}

The return type denotes the type of the value that function will return and it is

optional and if it is omitted, it is assumed to be int by default. The body of the

function is the compound statements or block which consists of local variable

declaration statement and optional return statement.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

The local variable declared inside a function is local to that function only. It can’t

be used anywhere in the program and its existence is only within this function.

The arguments of the function definition are known as formal arguments.

Function Call

When the function get called by the calling function then that is called, function

call. The compiler execute these functions when the semicolon is followed by the

function name.

Example:-

function(arg1,arg2,arg3);

The argument that are used inside the function call are called actual argument

Ex:-

int S=sum(a, b); //actual arguments

Actual argument

The arguments which are mentioned or used inside the function call is knows as

actual argument and these are the original values and copy of these are actually

sent to the called function

It can be written as constant, expression or any function call like

Function (x);

Function (20, 30);

Function (a*b, c*d);

Function(2,3,sum(a, b));

Formal Arguments

The arguments which are mentioned in function definition are called formal

arguments or dummy arguments.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

These arguments are used to just hold the copied of the values that are sent by the

calling function through the function call.

These arguments are like other local variables which are created when the function

call starts and destroyed when the function ends.

The basic difference between the formal argument and the actual argument are

1) The formal argument are declared inside the parenthesis where as the

local variable declared at the beginning of the function block.

2). The formal argument are automatically initialized when the copy of actual

arguments are passed while other local variable are assigned values through the

statements.

Order number and type of actual arguments in the function call should be match

with the order number and type of the formal arguments.

Return type

It is used to return value to the calling function. It can be used in two way as

return

Or return(expression);

Ex:- return (a);

return (a*b);

return (a*b+c);

Here the 1st return statement used to terminate the function without returning any

value

Ex:- /*summation of two values*/

int sum (int a1, int a2);

main()

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

{

int a,b;

printf(“enter two no”);

scanf(“%d%d”,&a,&b);

int S=sum(a,b);

printf(“summation is = %d”,s);

}

int sum(intx1,int y1)

{

int z=x1+y1;

Return z;

}

Advantage of function

By using function large and difficult program can be divided in to sub programs

and solved. When we want to perform some task repeatedly or some code is to be

used more than once at different place in the program, then function avoids this

repeatition or rewritten over and over.

Due to reducing size, modular function it is easy to modify and test

Notes:-

C program is a collection of one or more function.

A function is get called when function is followed by the semicolon.

A function is defined when a function name followed by a pair of curly braces

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Any function can be called by another function even main() can be called by other

function.

main()

{

function1()

}

function1()

{

Statement;

function2;

}

function 2()

{

}

So every function in a program must be called directly or indirectly by the main()

function. A function can be called any number of times.

A function can call itself again and again and this process is called recursion.

A function can be called from other function but a function can’t be defined in

another function

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 15

Category of Function based on argument and return type

i) Function with no argument & no return value

Function that have no argument and no return value is written as:-

void function(void);

main()

{

void function()

{

Statement;

}

Example:-

void me();

main()

{

me();

printf(“in main”);

}

void me()

{

printf(“come on”);

}

Output: come on

In main

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

ii) Function with no argument but return value

Syntax:-

int fun(void);

main()

{

int r;

r=fun();

}

int fun()

{

reurn(exp);

}

Example:-

int sum();

main()

{

int b=sum();

printf(“entered %d\n, b”);

}

int sum()

{

int a,b,s;

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

s=a+b;

return s;

}

Here called function is independent and are initialized. The values aren’t passed by

the calling function .Here the calling function and called function are

communicated partly with each other.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 16

iii) function with argument but no return value

Here the function have argument so the calling function send data to the called

function but called function dose n’t return value.

Syntax:-

void fun (int,int);

main()

{

int (a,b);

}

void fun(int x, int y);

{

Statement;

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Here the result obtained by the called function.

iv) function with argument and return value

Here the calling function has the argument to pass to the called function and the

called function returned value to the calling function.

Syntax:-

fun(int,int);

main()

{

int r=fun(a,b);

}

int fun(intx,inty)

{

}

Example:

return(exp);

main()

{

int fun(int);

int a,num;

printf(“enter value:\n”);

scanf(“%d”,&a)

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

int num=fun(a);

}

int fun(int x)

{

++x;

return x;

}

Call by value and call by reference

There are two way through which we can pass the arguments to the function

suchas call by value and call by reference.

1. Call by value

In the call by value copy of the actual argument is passed to the formal argument

and the operation is done on formal argument.

When the function is called by ‘call by value’ method, it doesn’t affect content of

the actual argument.

Changes made to formal argument are local to block of called function so when the

control back to calling function the changes made is vanish.

Example:-

main()

{

int x,y;

change(int,int);

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

printf(“enter two values:\n”);

scanf(“%d%d”,&x,&y);

change(x ,y);

printf(“value of x=%d and y=%d\n”,x ,y);

}

change(int a,int b);

{

int k;

k=a;

a=b;

b=k;

}

Output: enter two values: 12

23

Value of x=12 and y=23

2. Call by reference

Instead of passing the value of variable, address or reference is passed and the

function operate on address of the variable rather than value.

Here formal argument is alter to the actual argument, it means formal arguments

calls the actual arguments.

Example:-

void main()

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

{

int a,b;

change(int *,int*);

printf(“enter two values:\n”);

scanf(“%d%d”,&a,&b);

change(&a,&b);

printf(“after changing two value of a=%d and b=%d\n:”a,b);

}

change(int *a, int *b)

{

int k;

k=*a;

*a=*b;

*b= k;

printf(“value in this function a=%d and b=%d\n”,*a,*b);

}

Output: enter two values: 12

32

Value in this function a=32 and b=12

After changing two value of a=32 and b=12

So here instead of passing value of the variable, directly passing address of the

variables. Formal argument directly access the value and swapping is possible even

after calling a function.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 17

Local, Global and Static variable

Local variable:-

variables that are defined with in a body of function or block. The local

variables can be used only in that function or block in which they are declared.

Same variables may be used in different functions such as

function()

{

int a,b;

function 1();

}

function2 ()

{

int a=0;

b=20;

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Global variable:-

The variables that are defined outside of the function is called global variable. All

functions in the program can access and modify global variables. Global variables

are automatically initialized at the time of initialization.

Example:

#include<stdio.h>

void function(void);

void function1(void);

void function2(void);

int a, b=20;

void main()

{

printf(“inside main a=%d,b=%d \n”,a,b);

function();

function1();

function2();

}

function()

{

Prinf(“inside function a=%d,b=%d\n”,a,b);

}

function 1()

{

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

prinf(“inside function a=%d,b=%d\n”,a,b);

}

function 2()

{

prinf(“inside function a=%d,b=%d\n”,a,);

}

Static variables: static variables are declared by writing the key word static.

-syntax:-

static data type variable name;

static int a;

-the static variables initialized only once and it retain between the function call. If

its variable is not initialized, then it is automatically initialized to zero.

Example:

void fun1(void);

void fun2(void);

void main()

{

fun1();

fun2();

}

void fun1()

{

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

int a=10, static int b=2;

printf(“a=%d, b=%d”,a,b);

a++;

b++;

}

Output:a= 10 b= 2

a=10 b= 3

Recursion

When function calls itself (inside function body) again and again then it is

called as recursive function. In recursion calling function and called function are

same. It is powerful technique of writing complicated algorithm in easiest way.

According to recursion problem is defined in term of itself. Here statement with in

body of the function calls the same function and same times it is called as circular

definition. In other words recursion is the process of defining something in form of

itself.

Syntax:

main ()

{

rec(); /*function call*/

rec();

rec();

Ex:- /*calculate factorial of a no.using recursion*/

int fact(int);

void main()

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

{

int num;

printf(“enter a number”);

scanf(“%d”,&num);

f=fact(num);

printf(“factorial is =%d\n”f);

}

fact (int num)

{

If (num==0||num==1)

return 1;

else

return(num*fact(num-1));

}

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Lecture Note: 18

POINTER

A pointer is a variable that store memory address or that contains address of

another variable where addresses are the location number always contains whole

number. So, pointer contain always the whole number. It is called pointer because

it points to a particular location in memory by storing address of that location.

Syntax-

Data type *pointer name;

Here * before pointer indicate the compiler that variable declared as a pointer.

e.g.

int *p1; //pointer to integer type

float *p2; //pointer to float type

char *p3; //pointer to character type

When pointer declared, it contains garbage value i.e. it may point any value in the

memory.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Two operators are used in the pointer i.e. address operator(&) and indirection

operator or dereference operator (*).

Indirection operator gives the values stored at a particular address.

Address operator cannot be used in any constant or any expression.

Example:

void main()

{

int i=105;

int *p;

p=&i;

t

printf(“value of i=%d”,*p);

printf(“value of i=%d”,*/&i);

printf(“address of i=%d”,&i);

printf(“address of i=%d”,p);

printf(“address of p=%u”,&p);

}

Pointer Expression

Pointer assignment

int i=10;

int *p=&i;//value assigning to the pointer

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

Here declaration tells the compiler that P will be used to store the address of

integer value or in other word P is a pointer to an integer and *p reads the value at

the address contain in p.

P++;

printf(“value of p=%d”);

We can assign value of 1 pointer variable to other when their base type and data

type is same or both the pointer points to the same variable as in the array.

Int *p1,*p2;

P1=&a[1];

P2=&a[3];

We can assign constant 0 to a pointer of any type for that symbolic constant

‘NULL’ is used such as

*p=NULL;

It means pointer doesn’t point to any valid memory location.

Pointer Arithmetic

Pointer arithmetic is different from ordinary arithmetic and it is perform relative to

the data type(base type of a pointer).

Example:-

If integer pointer contain address of 2000 on incrementing we get address of 2002

instead of 2001, because, size of the integer is of 2 bytes.

Note:-

When we move a pointer, somewhere else in memory by incrementing or

decrement or adding or subtracting integer, it is not necessary that, pointer still

pointer to a variable of same data, because, memory allocation to the variable are

done by the compiler.

GANDHI INSTITUTE OF TECHNOLOGY & MANAGEMENT, BHUBANESWAR

But in case of array it is possible, since there data are stored in a consecutive

manner.

Ex:-

void main()

{

static int a[]={20,30,105,82,97,72,66,102};

int *p,*p1;

P=&a[1];

P1=&a[6];

printf(“%d”,*p1-*p);

printf(“%d”,p1-p);

}

Arithmetic operation never perform on pointer are:

addition, multiplication and division of two pointer.

multiplication between the pointer by any number.

division of pointer by any number

-add of float or double value to the pointer.

Operation performed in pointer are:-

/* Addition of a number through pointer */

Example

int i=100;

int *p;

p=&i;

p=p+2;

p=p+3;

p=p+9;

ii /* Subtraction of a number from a pointer’*/

Ex:-

int i=22;

*p1=&a;

p1=p1-10;

p1=p1-2;

iii- Subtraction of one pointer to another is possible when pointer variable point to

an element of same type such as an array.

Ex:-

in tar[]={2,3,4,5,6,7};

int *ptr1,*ptr1;

ptr1=&a[3]; //2000+4

ptr2=&a[6]; //2000+6

96

Lecture Note: 19

Pointer to pointer

Addition of pointer variable stored in some other variable is called pointer to

pointer variable.

Or

Pointer within another pointer is called pointer to pointer.

Syntax:-

Data type **p;

int x=22;

int *p=&x;

int **p1=&p;

printf(“value of x=%d”,x);

printf(“value of x=%d”,*p);

printf(“value of x=%d”,*&x);

printf(“value of x=%d”,**p1);

printf(“value of p=%u”,&p);

printf(“address of p=%u”,p1);

printf(“address of x=%u”,p);

printf(“address of p1=%u”,&p1);

printf(“value of p=%u”,p);

printf(“value of p=%u”,&x);

p1

*Under revision

P 2000

X 1000

22

97 *Under revision

3000

Pointer vs array

Example :-

void main()

{

static char arr[]=”Rama”;

char*p=”Rama”;

printf(“%s%s”, arr, p);

In the above example, at the first time printf(), print the same value array and

pointer.

Here array arr, as pointer to character and p act as a pointer to array of

character . When we are trying to increase the value of arr it would give the error

because its known to compiler about an array and its base address which is always

printed to base address is known as constant pointer and the base address of array

which is not allowed by the compiler.

printf(“size of (p)”,size of (ar));

size of (p) 2/4 bytes

size of(ar) 5 bytes

98 *Under revision

Sructure

It is the collection of dissimilar data types or heterogenous data types grouped

together. It means the data types may or may not be of same type.

Structure declaration-

struct tagname

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

struct

{

Data type member1;

Data type member2;

99 *Under revision

Data type member3;

………

………

Data type member n;

};

OR

struct tagname

{

struct element 1;

struct element 2;

struct element 3;

………

………

struct element n;

};

Structure variable declaration;

struct student

{

int age; char

name[20]; char

branch[20];

100 *Under revision

}; struct student s;

Initialization of structure variable-

Like primary variables structure variables can also be initialized when they are

declared. Structure templates can be defined locally or globally. If it is local it can

be used within that function. If it is global it can be used by all other functions of

the program.

We cant initialize structure members while defining the structure

struct student

{

int age=20;

char name[20]=”sona”;

}s1;

The above is invalid.

A structure can be initialized as

struct student

{

int age,roll;

char name[20];

} struct student s1={16,101,”sona”};

struct student s2={17,102,”rupa”};

If initialiser is less than no.of structure variable, automatically rest values are taken

as zero.

101 *Under revision

Lecture Note: 20

Accessing structure elements-

Dot operator is used to access the structure elements. Its associativety is from left

to right.

structure variable ;

s1.name[];

s1.roll;

s1.age;

Elements of structure are stored in contiguous memory locations. Value of

structure variable can be assigned to another structure variable of same type using

assignment operator.

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

int roll, age;

char branch;

} s1,s2;

printf(“\n enter roll, age, branch=”);

scanf(“%d %d %c”, &s1.roll, &s1.age, &s1.branch);

s2.roll=s1.roll;

printf(“ students details=\n”);

printf(“%d %d %c”, s1.roll, s1.age, s1.branch);

102 *Under revision

printf(“%d”, s2.roll);

}

Unary, relational, arithmetic, bitwise operators are not allowed within structure

variables.

Size of structure-

Size of structure can be found out using sizeof() operator with structure variable

name or tag name with keyword.

sizeof(struct student); or

sizeof(s1);

sizeof(s2);

Size of structure is different in different machines. So size of whole structure may

not be equal to sum of size of its members.

Array of structures

When database of any element is used in huge amount, we prefer Array of

structures.

Example: suppose we want to maintain data base of 200 students, Array of

structures is used.

#include<stdio.h>

#include<string.h>

struct student

{

103 *Under revision

char name[30];

char branch[25];

int roll;

};

void main()

{

struct student s[200];

int i;

s[i].roll=i+1;

printf("\nEnter information of students:");

for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll);

printf("\nEnter the name:");

scanf("%s",s[i].name);

printf("\nEnter the branch:");

scanf("%s",s[i].branch);

printf("\n");

}

printf("\nDisplaying information of students:\n\n");

for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

104 *Under revision

printf("\nName:");

puts(s[i].name);

printf("\nBranch:");

puts(s[i].branch);

}

}

105 *Under revision

Lecture Note: 21

UNION

Union is derived data type contains collection of different data type or dissimilar

elements. All definition declaration of union variable and accessing member is

similar to structure, but instead of keyword struct the keyword union is used, the

main difference between union and structure is;

Each member of structure occupy the memory location, but in the unions

members share memory. Union is used for saving memory and concept is useful

when it is not necessary to use all members of union at a time.

Where union offers a memory treated as variable of one type on one occasion

where (struct), it read number of different variables stored at different place of

memory.

Syntax of union:

union student

{

datatype member1;

datatype member2;

};

Like structure variable, union variable can be declared with definition or separately

such as

union union name

{

Datatype member1;

}var1;

106 *Under revision

Example:- union student s;

Union members can also be accessed by the dot operator with union variable and if

we have pointer to union then member can be accessed by using (arrow) operator

as with structure.

Example:- struct student

struct student

{

int i;

char ch[10];

};struct student s;

Here datatype/member structure occupy 12 byte of location is memory, where as in

the union side it occupy only 10 byte.

107 *Under revision

Lecture Note: 22
Dynamic memory Allocation

The process of allocating memory at the time of execution or at the runtime, is

called dynamic memory location.

Two types of problem may occur in static memory allocation.

If number of values to be stored is less than the size of memory, there would be

wastage of memory.

If we would want to store more values by increase in size during the execution on

assigned size then it fails.

Allocation and release of memory space can be done with the help of some library

function called dynamic memory allocation function. These library function are

called as dynamic memory allocation function. These library function prototype

are found in the header file, “alloc.h” where it has defined.

Function take memory from memory area is called heap and release when not

required.

Pointer has important role in the dynamic memory allocation to allocate memory.

malloc():

This function use to allocate memory during run time, its declaration is

void*malloc(size);

108 *Under revision

malloc ()

returns the pointer to the 1st byte and allocate memory, and its return type is void,

which can be type cast such as:

int *p=(datatype*)malloc(size)

If memory location is successful, it returns the address of the memory chunk that

was allocated and it returns null on unsuccessful and from the above declaration a

pointer of type(datatype) and size in byte.

And datatype pointer used to typecast the pointer returned by malloc and this

typecasting is necessary since, malloc() by default returns a pointer to void.

Example int*p=(int*)malloc(10);

So, from the above pointer p, allocated IO contigious memory space address of 1st

byte and is stored in the variable.

We can also use, the size of operator to specify the the size, such as

p=(int)malloc(5*size of int) Here, 5 is the no. of data.

Moreover , it returns null, if no sufficient memory available , we should always

check the malloc return such as, if(p==null)

printf(“not sufficient memory”);

Example:

/*calculate the average of mark*/

void main()

{

int n , avg,i,*p,sum=0;

109 *Under revision

printf("enter the no. of marks ”);

scanf(“%d”,&n);

p=(int *)malloc(n*size(int));

if(p==null)

printf(“not sufficient”);

exit();

}

for(i=0;i<n;i++)

scanf(“%d”,(p+i));

for(i=0;i<n;i++)

Printf(“%d”,*(p+i));

sum=sum+*p;

avg=sum/n;

printf(“avg=%d”,avg);

110 *Under revision

Lecture Note: 23

calloc()

Similar to malloc only difference is that calloc function use to allocate multiple

block of memory .

two arguments are there

1st argument specify number of blocks

2nd argument specify size of each block.

Example:-

int *p= (int*) calloc(5, 2);

int*p=(int *)calloc(5, size of (int));

Another difference between malloc and calloc is by default memory allocated by

malloc contains garbage value, where as memory allocated by calloc is initialised

by zero(but this initialisation) is not reliable.

realloc()

The function realloc use to change the size of the memory block and it alter the

size of the memory block without loosing the old data, it is called reallocation of

memory.

It takes two argument such as;

int *ptr=(int *)malloc(size);

int*p=(int *)realloc(ptr, new size);

The new size allocated may be larger or smaller.

If new size is larger than the old size, then old data is not lost and newly allocated

bytes are uninitialized. If old address is not sufficient then starting address

contained in pointer may be changed and this reallocation function moves content

of old block into the new block and data on the old block is not lost.

111 *Under revision

Example:

#include<stdio.h>

#include<alloc.h>void

main()

int i,*p;

p=(int*)malloc(5*size of (int));

if(p==null)

{

printf(“space not available”);exit();

printf(“enter 5 integer”);

for(i=0;i<5;i++)

{

scanf(“%d”,(p+i));

int*ptr=(int*)realloc(9*size of (int));

if(ptr==null)

{

printf(“not available”);

exit();

}

printf(“enter 4 more integer”);

for(i=5;i<9;i++)

scanf(“%d”,(p+i));

for(i=0;i<9;i++)

printf(“%d”,*(p+i));

}

112 *Under revision

LECTURE NOTE-24

Introduction to Data Structure

In computer terms, a data structure is a Specific way to store and organize data in a

computer's memory so that these data can be used efficiently later. Data may be

arranged in many different ways such as the logical or mathematical model for a

particular organization of data is termed as a data structure. The variety of a

particular data model depends on the two factors -

• Firstly, it must be loaded enough in structure to reflect the actual relationships of the data

with the real world object.

• Secondly, the formation should be simple enough so that anyone can efficiently process

the data each time it is necessary.

Categories of Data Structure:

The data structure can be sub divided into major types:
• Linear Data Structure

• Non-linear Data Structure

Linear Data Structure:

A data structure is said to be linear if its elements combine to form any specific

order. There are basically two techniques of representing such linear structure

within memory.

• First way is to provide the linear relationships among all the elements represented by

means of linear memory location. These linear structures are termed as arrays.

• The second technique is to provide the linear relationship among all the elements

represented by using the concept of pointers or links. These linear structures are termed as

linked lists.

The common examples of linear data structure are:
• Arrays

• Queues

• Stacks

• Linked lists

Non linear Data Structure:

This structure is mostly used for representing data that contains a hierarchical

relationship among various elements.

Examples of Non Linear Data Structures are listed below:
• Graphs

• family of trees and

• table of contents

Tree: In this case, data often contain a hierarchical relationship among various

elements. The data structure that reflects this relationship is termed as rooted

treegraph or a tree.

113 *Under revis

Graph: In this case, data sometimes hold a relationship between the pairs of

elements which is not necessarily following the hierarchical structure. Such data

structure is termed as a Graph.

Array is a container which can hold a fix number of items and these items should

be of the same type. Most of the data structures make use of arrays to implement

their algorithms. Following are the important terms to understand the concept of

Array.
• Element − Each item stored in an array is called an element.

• Index − Each location of an element in an array has a numerical index, which is used to

identify the element.

Array Representation:(Storage structure)

Arrays can be declared in various ways in different languages. For illustration, let's

take C array declaration.

Arrays can be declared in various ways in different languages. For illustration, let's

take C array declaration.

As per the above illustration, following are the important points to be considered.
• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we can fetch anelement

at index 6 as 9.

Basic Operations

Following are the basic operations supported by an array.
• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults values to its

elements in following order. ion
Data Type Default Value

bool false

114 *Under revision

1. Start

2. Set J = N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set LA[J+1] = LA[J]

6. Set J = J-1

7. Set LA[K] = ITEM

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int item = 10, k = 3, n =

5;int i = 0, j = n;

printf("The original array elements are

:\n");for(i = 0; i<n; i++) {
printf("LA[%d] = %d \n", i, LA[i]);

char 0

int 0

float 0.0

double 0.0f

void

wchar_t 0

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index

of array.

Here, we see a practical implementation of insertion operation, where we add data

at the end of the array −

Algorithm

Let LA be a Linear Array (unordered) with N elements and K is a positive

integer suchthat K<=N. Following is the algorithm where ITEM is inserted into

the Kth position of LA

−

Example

Following is the implementation of the above algorithm −

Example 115 *Under revision

The original array elements

are :LA[0] = 1
LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after

insertion :LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 10

LA[4] = 7

When we compile and execute the above program, it produces the following result −

Output

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing

all elements of an array.
Algorithm

Consider LA is a linear array with N elements and K is a positive integer

such that K<=N. Following is the algorithm to delete an element available at the

Kth position of LA.
1. Start

2. Set J = K

3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

n = n + 1;

while(j >=

k) {

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

printf("The array elements after insertion

:\n");for(i = 0; i<n; i++) {
printf("LA[%d] = %d \n", i, LA[i]);

116 *Under revision

#include <stdio.h>

void main() {

int LA[] = {1,3,5,7,8};

int k = 3, n =

5;int i, j;

printf("The original array elements are

:\n");for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

j = k;

while(j < n) {

LA[j-1] =

LA[j];

j = j + 1;

}

n = n -1;

printf("The array elements after deletion

Following is the implementation of the above algorithm −

When we compile and execute the above program, it produces the following result −

Output

The original array elements

are :LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after

deletion :LA[0] = 1

LA[1] = 3

LA[2] = 7

117 *Under revision

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

#include <stdio.h>

void main() {

int LA[] = {1,3,5,7,8};

int item = 5, n =

5;int i = 0, j = 0;

printf("The original array elements are

:\n");for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

while(j < n){

if(LA[j] ==

item) {break;

}

j = j + 1;
}

Lecture Note-25

SearchOperation

You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer

such that K<=N. Following is the algorithm to find an element with a value of

ITEM using sequential search.

Example

Following is the implementation of the above algorithm −

When we compile and execute the above program, it produces the following result −

Output

The original array elements

are :LA[0] = 1

LA[1] = 3

LA[2] = 5

118 Under revision

The original array elements

are :LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

1. Start

2. Set LA[K-1] = ITEM
3. Stop

#include <stdio.h>

void main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5, item =

10;int i, j;

printf("The original array elements are

:\n");for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

LA[k-1] = item;

printf("The array elements after updation

:\n");for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer

such that K<=N. Following is the algorithm to update an element available at the

Kth position of LA.

Example

Following is the implementation of the above algorithm −

When we compile and execute the above program, it produces the following result −

Output

*

LA[3] = 7

LA[4] = 8
Found element 5 at position 3

119 *Under revision

The array elements after

updation :LA[0] = 1

LA[1] = 3

LA[2] = 10

LA[3] = 7

i++) 120 *Under revision

Lecture-26

Sparse Matrix and its representations

A matrix is a two-dimensional data object made of m rows and n columns,

therefore having total m x n values. If most of the elements of the matrix have 0

value, then it is called a sparse matrix.
Why to use Sparse Matrix instead of simple matrix ?
▪ Storage: There are lesser non-zero elements than zeros and thus lessermemory

can be used to store only those elements.

▪ Computing time: Computing time can be saved by logically designing a data

structure traversing only non-zero elements..

Example:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as

zeroes in the matrix are of no use in most of the cases. So, instead of storing

zeroes with non-zero elements, we only store non-zero elements. This means

storing non-zero elements with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways following are two common

representations:
1. Array representation

2. Linked list representation

Method 1: Using Arrays

#include<stdio.h>

int main()

{

// Assume 4x5 sparse

matrixint

sparseMatrix[4][5] =

{

{0 , 0 , 3 , 0 , 4 },

{0 , 0 , 5 , 7 , 0 },

{0 , 0 , 0 , 0 , 0 },

{0 , 2 , 6 , 0 , 0 }

};

int size = 0;

for (int i = 0; i < 4;

https://www.geeksforgeeks.org/data-structures/#Matrix

121 *Under revision

for (int j = 0; j < 5;j++)

if (sparseMatrix[i][j]

!= 0)size++;

int compactMatrix[3][size];

// Making of new matrix

int k = 0;

for (int i = 0; i < 4;

i++) for (int j = 0; j

< 5; j++)

if (sparseMatrix[i][j] != 0)

{

compactMatrix[0][k] = i;

compactMatrix[1][k] = j;

compactMatrix[2][k] =

sparseMatrix[i][j];k++;

}

for (int i=0; i<3; i++)

{

for (int j=0; j<size; j++)

printf("%d ",

compactMatrix[i][j]);

printf("\n");

}

return 0;

}

122 *Under revision

pile of plates, etc.

Lecture Note-27

STACK

A stack is an Abstract Data Type (ADT), commonly used in most programming languages.

It is named stack as it behaves like a real-world stack, for example – a deck of cards or a

A real-world stack allows operations at one end only. For example, we can place or

remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all data

operations at one end only. At any given time, we can only access the top element of a

stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the

element which is placed (inserted or added) last, is accessed first. In stack terminology,

insertion operation is called PUSH operation and removal operation is called POP

operation.

Stack Representation

The following diagram depicts a stack and its operations −

Implementation of isfull() function in C programming language −

begin procedure peek

return stack[top]

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack

can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are

going to implement stack using arrays, which makes it a fixed size stack implementation.

Basic OperationsStack operations may involve initializing the stack, using it and then de-

initializing it. Apart from these basic stuffs, a stack is used for the following two primary

operations −

• push() − Pushing (storing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same

purpose,the following functionality is added to stacks −
• peek() − get the top data element of the stack, without removing it.

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer

always represents the top of the stack, hence named top. The top pointer provides top

value of the stack without actually removing it.

First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

Implementation of peek() function in C programming language −

Example

isfull()

Algorithm of isfull() function −

begin procedure isfull

if top equals to MAXSIZE

return true

else

return false
123 *Under revision

int peek() {

return stack[top];

124 *Under revision

bool isfull() {

if(top == MAXSIZE)

return true;

else

Example

125 *Under revision

bool isempty() {

if(top == -1)

return true;

else

return false;

begin procedure isempty

if top less than 1

return true

else

return false

isempty()

Algorithm of isempty() function −

Implementation of isempty() function in C programming language is slightly different.

We initialize top at -1, as the index in array starts from 0. So we check if the top is below

zero or -1to determine if the stack is empty. Here's the code −
Example

Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push

operation involves a series of steps −
• Step 1 − Checks if the stack is full.

• Step 2 − If the stack is full, produces an error and exit.

• Step 3 − If the stack is not full, increments top to point next empty space.

• Step 4 − Adds data element to the stack location, where top is pointing.

• Step 5 − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate space

dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows − begin procedure push: stack, data

126 *Under revision

return null

endif

top ← top + 1

stack[top] ← data

if stack is full

Implementation of this algorithm in C, is very easy. See the following code −

Example

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In

an array implementation of pop() operation, the data element is not actually

removed, instead top is decremented to a lower position in the stack to point to the next

value. But in linked-list implementation, pop() actually removes data element and

deallocates memory space.A Pop operation may involve the following steps −
• Step 1 − Checks if the stack is empty.

• Step 2 − If the stack is empty, produces an error and exit.

• Step 3 − If the stack is not empty, accesses the data element at which top is pointing.

• Step 4 − Decreases the value of top by 1.

• Step 5 − Returns success.

void push(int data) {

if(!isFull()) {

top = top + 1;

stack[top] = data;

} else {

printf("Could not insert data, Stack is full.\n");

127 *Under revision

Algorithm for Pop Operation

128 *Under revision

begin procedure pop: stack

if stack is empty

return null

endif

 data ← stack[top]

int pop(int data) {

if(!isempty()) {

data = stack[top];

top = top - 1;

return data;

 } else {

A simple algorithm for Pop operation can be derived as follows −

Implementation of this algorithm in C, is as follows −

Example

129 *Under revision

Lecture Note-28

Stack Applications

Three applications of stacks are presented here. These examples are central to many

activitiesthat a computer must do and deserve time spent with them.
1. Expression evaluation

2. Backtracking (game playing, finding paths, exhaustive searching)

3. Memory management, run-time environment for nested language features.

Expression evaluation

In particular we will consider arithmetic expressions. Understand that there are boolean

and logical expressions that can be evaluated in the same way. Control structures can also

be treated similarly in a compiler.

This study of arithmetic expression evaluation is an example of problem solving where you

solvea simpler problem and then transform the actual problem to the simpler one.

Aside: The NP-Complete problem. There are a set of apparently intractable problems:

finding the shortest route in a graph (Traveling Salesman Problem), bin packing, linear

programming, etc. that are similar enough that if a polynomial solution is ever found

(exponential solutions abound) for one of these problems, then the solution can be applied

to all problems.

Infix, Prefix and Postfix Notation

We are accustomed to write arithmetic expressions with the operation between the two

operands: a+b or c/d. If we write a+b*c, however, we have to apply precedence rules to

avoidthe ambiguous evaluation (add first or multiply first?).

There's no real reason to put the operation between the variables or values. They can

just as well precede or follow the operands. You should note the advantage of prefix and

postfix: theneed for precedence rules and parentheses are eliminated.

Infix Prefix Postfix

a + b + a b a b +

a + b * c + a * b c a b c * +

(a + b) * (c - d) * + a b - c d a b + c d - *

b * b - 4 * a * c

40 - 3 * 5 + 1

Postfix expressions are easily evaluated with the aid of a stack.

Infix Prefix Postfix

a + b + a b a b +

130 *Under revision

a + b * c + a * b c a b c * +

(a + b) * (c - d) * + a b - c d a b + c d - *

b * b - 4 * a * c - * b b * * 4 a c b b * 4 a * c * -

40 - 3 * 5 + 1 = 26 + - 40 * 3 5 1 40 3 5 * - 1 +

Postfix Evaluation Algorithm

Assume we have a string of operands and operators, an informal, by hand process is
1. Scan the expression left to right

2. Skip values or variables (operands)

3. When an operator is found, apply the operation to the preceding two operands

4. Replace the two operands and operator with the calculated value (three symbols arereplaced

with one operand)

5. Continue scanning until only a value remains--the result of the expression

The time complexity is O(n) because each operand is scanned once, and each operation is

performed once.
A more formal algorithm:

create a new stack

while(input stream is not

empty){token =

getNextToken(); if(token

instanceof operand){

push(token);

} else if (token instance of

operator)op2 = pop();

op1 = pop();

result = calc(token, op1,

op2);push(result);

}

}

return pop();

Demonstration with 2 3 4 + * 5 -

Infix transformation to Postfix

This process uses a stack as well. We have to hold information that's expressed inside

parentheses while scanning to find the closing ')'. We also have to hold information on

operations that are of lower precedence on the stack. The algorithm is:

131 *Under revision

1. Create an empty stack and an empty postfix output string/stream

2. Scan the infix input string/stream left to right

3. If the current input token is an operand, simply append it to the output string (note the

examples above that the operands remain in the same order)

4. If the current input token is an operator, pop off all operators that have equal or higher

precedence and append them to the output string; push the operator onto the stack.

Theorder of popping is the order in the output.
5. If the current input token is '(', push it onto the stack

6. If the current input token is ')', pop off all operators and append them to the output stringuntil a

'(' is popped; discard the '('.

7. If the end of the input string is found, pop all operators and append them to the outputstring.

This algorithm doesn't handle errors in the input, although careful analysis of parenthesis or

lackof parenthesis could point to such error determination.

Apply the algorithm to the above expressions.

Backtracking

Backtracking is used in algorithms in which there are steps along some path (state) from

somestarting point to some goal.
• Find your way through a maze.

• Find a path from one point in a graph (roadmap) to another point.

• Play a game in which there are moves to be made (checkers, chess).

In all of these cases, there are choices to be made among a number of options. We need

some way to remember these decision points in case we want/need to come back and try

the alternative

Consider the maze. At a point where a choice is made, we may discover that the choice

leads to a dead-end. We want to retrace back to that decision point and then try the other

(next) alternative.

Again, stacks can be used as part of the solution. Recursion is another, typically more

favored, solution, which is actually implemented by a stack.

Memory Management

Any modern computer environment uses a stack as the primary memory management

model for a running program. Whether it's native code (x86, Sun, VAX) or JVM, a stack is

at the center of the run-time environment for Java, C++, Ada, FORTRAN, etc.

The discussion of JVM in the text is consistent with NT, Solaris, VMS, Unix runtime

environments.

Each program that is running in a computer system has its own memory allocation

containingthe typical layout as shown below.

132 *Under revision

Call and return process

When a method/function is called

1. An activation record is created; its size depends on the number and size of the localvariables

and parameters.

2. The Base Pointer value is saved in the special location reserved for it

3. The Program Counter value is saved in the Return Address location

4. The Base Pointer is now reset to the new base (top of the call stack prior to the creationof the

AR)

5. The Program Counter is set to the location of the first bytecode of the method beingcalled

6. Copies the calling parameters into the Parameter region

7. Initializes local variables in the local variable region

While the method executes, the local variables and parameters are simply found by

adding aconstant associated with each variable/parameter to the Base Pointer.

When a method returns

1. Get the program counter from the activation record and replace what's in the PC

2. Get the base pointer value from the AR and replace what's in the BP

3. Pop the AR entirely from the stack.

In queue, we always dequeue (or access1)33data, pointed by front pointer*Uanndderwrehviisleionenqueing

item stored first will be accessed first.

Lecture Note-29

QUEUE

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is

open at both its ends. One end is always used to insert data (enqueue) and the other is used

to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data

A real-world example of queue can be a single-lane one-way road, where the vehicle

enters first, exits first. More real-world examples can be seen as queues at the ticket

windows and bus- stops.
Queue Representation

As we now understand that in queue, we access both ends for different reasons. The

following diagram given below tries to explain queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and

Structures. For the sake of simplicity, we shall implement queues using one-dimensional

array. Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then

completely erasing it from the memory. Here we shall try to understand the basic

operations associatedwith queues −
• enqueue() − add (store) an item to the queue.

• dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient.

Theseare −
• peek() − Gets the element at the front of the queue without removing it.

• isfull() − Checks if the queue is full.

• isempty() − Checks if the queue is empty.

134 *Under revision

(orstoring) data in the queue we take help of rear pointer.

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The algorithm of peek()

function isas follows −

Algorithm

Implementation of peek() function in C programming language −

Example

isfull()

As we are using single dimension array to implement queue, we just check for the rear

pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain the

queue in a circular linked-list, the algorithm will differ. Algorithm of isfull() function −

Algorithm

Implementation of isfull() function in C programming language −

Example

Example

begin procedure peek

return queue[front]

bool isfull() {

if(rear == MAXSIZE - 1)

return true;

else

begin procedure isfull

if rear equals to MAXSIZE

return true

else

return false

int peek() {

return queue[front];

135 *Under revision

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are

comparativelydifficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −
• Step 1 − Check if the queue is full.

• Step 2 − If the queue is full, produce overflow error and exit.

• Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

• Step 4 − Add data element to the queue location, where the rear is pointing.

• Step 5 − return success.

Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen

situations.

Algorithm for enqueue operation

bool isempty() {

if(front < 0 || front > rear)

return true;

else

procedure enqueue(data)

136 *Under revision

Implementation of enqueue() in C programming language −

Example

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data where front is

pointing and remove the data after access. The following steps are taken to

perform dequeue operation −

• Step 1 − Check if the queue is empty.

• Step 2 − If the queue is empty, produce underflow error and exit.

• Step 3 − If the queue is not empty, access the data where front is pointing.

• Step 4 − Increment front pointer to point to the next available data element.

• Step 5 − Return success.

Algorithm for dequeue operation

endif

rear ← rear + 1

queue[rear] ← data

return true

procedure dequeue

int enqueue(int data)

if(isfull())

return 0;

rear = rear + 1;

queue[rear] = data;

137 *Under revision

Implementation of dequeue() in C programming language −

Example

if queue is empty

return underflow

end if

data = queue[front]

front ← front + 1

int dequeue() {

if(isempty())

return 0;

int data = queue[front];

front = front + 1;

138 *Under revision

nextnode.

Lecture Note-30

LINKED LIST

A linked list is a sequence of data structures, which are connected together via

links. Linked List is a sequence of links which contains items. Each link contains a

connectionto another link. Linked list is the second most-used data structure after

array. Followingare the important terms to understand the concept of Linked List.

• Link − Each link of a linked list can store a data called an element.

• Next − Each link of a linked list contains a link to the next link called Next.

• LinkedList − A Linked List contains the connection link to the first link called

First.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the

As per the above illustration, following are the important points to be considered.
• Linked List contains a link element called first.

• Each link carries a data field(s) and a link field called next.

• Each link is linked with its next link using its next link.

• Last link carries a link as null to mark the end of the list.

Types of Linked List

Following are the various types of linked list.
• Simple Linked List − Item navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward.

• Circular Linked List − Last item contains link of the first element as next andthe first

element has a link to the last element as previous.

Basic Operations

Following are the basic operations supported by a list.
• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

• Display − Displays the complete list.

• Search − Searches an element using the given key.

• Delete − Deletes an element using the given key.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn

this with diagrams here. First, create a node using the same structure and find the

location where it has to be inserted.

139 *Under revision

NewNode.next −> RightNode;

LeftNode.next −> NewNode;

Imagine that we are inserting a node B (NewNode), between A

(LeftNode)and C (RightNode). Then point B.next to C −

It should look like this −

Now, the next node at the left should point to the new node.

This will put the new node in the middle of the two. The new list should look like this −

Similar steps should be taken if the node is being inserted at the beginning of the

list. While inserting it at the end, the second last node of the list should point

to the newnode and the new node will point to NULL.

*Under revision

algorithms.

140

followingcode, we will remove what the target node is pointing at.

LeftNode.next −> TargetNode.next;

Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial

representation. First, locate the target node to be removed, by using searching

The left (previous) node of the target node now should point to the next node of

the target node −

This will remove the link that was pointing to the target node. Now, using the

We need to use the deleted node. We can keep that in memory otherwise we

cansimply deallocate memory and wipe off the target node completely.

Reverse Operation

This operation is a thorough one. We need to make the last node to be pointed by

TargetNode.next −> NULL;

thehead node and reverse the whole linked list.

141 *Under revision

First, we traverse to the end of the list. It should be pointing to NULL. Now, we

shall make it point to its previous node −

We have to make sure that the last node is not the lost node. So we'll have some

temp node, which looks like the head node pointing to the last node. Now, we

shall make all left side nodes point to their previous nodes one by one.

Except the node (first node) pointed by the head node, all nodes should point to

their predecessor, making them their new successor. The first node will point to

NULL.

We'll make the head node point to the new first node by using the temp node.

The linked list is now reversed.

Program:

142 *Under revision

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include

<stdbool.h>

struct node

{int data;

int key;

struct node *next;

};

struct node *head =

NULL; struct node

*current = NULL;

//display the

listvoid

printList() {

struct node *ptr =

head;printf("\n[");

//start from the

beginningwhile(ptr !=

NULL) {

printf("(%d,%d) ",ptr->key,ptr-

>data);ptr = ptr->next;
}

printf("]");

}

//insert link at the first location

void insertFirst(int key, int

data) {

//create a link

struct node *link = (struct node*) malloc(sizeof(struct node));

link->key =

key; link->data

= data;

//point it to old first

nodelink->next =

head;

//point first to new first

nodehead = link;

}

//delete first item

struct node* deleteFirst() {

143 *Under revision

144 *Under revision

//save reference to first link

struct node *tempLink =

head;

//mark next to first link as

firsthead = head->next;

//return the deleted link

145 *Under revision

return tempLink;

}

//is list empty

bool isEmpty()

{

return head == NULL;

}

int length() {

int length = 0;

struct node *current;

for(current = head; current != NULL; current = current->next) {

length++;

}

return length;

}

//find a link with given

keystruct node* find(int

key) {

//start from the first link

struct node* current =

head;

//if list is empty

if(head ==

NULL) {

return NULL;

}

//navigate through list

while(current->key !=

key) {

146 *Under revision

//if it is last node

if(current->next ==

NULL) {return NULL;

} else {

//go to next link

current = current->next;

}

}

linkhead = head->next; 147 *Under revision

//if data found, return the current

Linkreturn current;

}

//delete a link with given

keystruct node* delete(int

key) {

//start from the first link

struct node* current =

head;

struct node* previous = NULL;

//if list is empty

if(head ==

NULL) {

return NULL;

}

//navigate through list

while(current->key !=

key) {

//if it is last node

if(current->next ==

NULL) {return NULL;
} else {

//store reference to current

linkprevious = current;

//move to next link

current = current-

>next;

}

}

//found a match, update the

linkif(current == head) {

//change first to point to next

148 *Under revision

} else {

//bypass the current link

previous->next = current-

>next;

}

return current;

}

NULL; 149 *Under revision

void sort() {

int i, j, k, tempKey,

tempData;struct node

*current;

struct node *next;

int size =

length();k = size

;

for (i = 0 ; i < size - 1 ; i++, k-

-) {current = head;

next = head->next;

for (j = 1 ; j < k ; j++) {

if (current->data > next->data

) {tempData = current-

>data; current->data = next-

>data; next->data =

tempData;

tempKey = current-

>key; current->key =

next->key;next->key =

tempKey;

}

current = current-

>next;next = next-

>next;

}

}

}

void reverse(struct node**

head_ref) {struct node* prev =

150 *Under revision

struct node* current =

head_ref;struct node next;

while (current !=

NULL) {next =

current->next;

current->next = prev;

prev = current;

current = next;

}

151 *Under revision);

*head_ref = prev;

}

void main() {

insertFirst(1,10

);

insertFirst(2,20

);

insertFirst(3,30

);

insertFirst(4,1);

insertFirst(5,40

);

insertFirst(6,56

);

printf("Original List: ");

//print

list

printList(

);

while(!isEmpty()) {

struct node *temp =

deleteFirst();printf("\nDeleted

value:");

printf("(%d,%d) ",temp->key,temp->data);

}

printf("\nList after deleting all

items: ");printList();

insertFirst(1,10

);

insertFirst(2,20

);

insertFirst(3,30

152 *Under revision

insertFirst(4,1);

insertFirst(5,40

);

insertFirst(6,56

);

printf("\nRestored List:

");printList();

printf("\n");

struct node *foundLink = find(4);

if(foundLink != NULL)

{ printf("Element

found: ");

printf("(%d,%d) ",foundLink->key,foundLink-

>data);printf("\n");

153 *Under revision

} else {

printf("Element not found.");

}

delete(4);

printf("List after deleting an

item: ");printList();

printf("\n");

foundLink =

find(4);

if(foundLink != NULL)

{ printf("Element

found: ");

printf("(%d,%d) ",foundLink->key,foundLink-

>data);printf("\n");

} else {

printf("Element not found.");

}

printf("\n

");sort();

printf("List after sorting the

data: ");printList();

reverse(&head);

printf("\nList after reversing the

data: ");printList();

}

154 *Under revision

Original List:

[(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

Deleted

value:(6,56)

Deleted

value:(5,40)

Deleted

value:(4,1)

Deleted

value:(3,30)

Deleted

If we compile and run the above program, it will produce the following result

−Output

155 *Under revision

