
MCA-20204 FORMAL LANGUAGES & AUTOMATA THEORY 

 

UNIT-I 

Finite Automata and Regular Expressions: Basic Concepts of Finite State Systems, 

Chomsky Hierarchy of Languages, Deterministic and Non-Deterministic Finite Automata, 

Finite Automata with є-moves, Regular Expressions. 

Regular sets &Regular Grammars: Basic Definitions of Formal Languages and Grammars, 

Regular Sets and Regular Grammars, Closure Properties of Regular Sets, Pumping Lemma for 

Regular Sets, Decision Algorithm for Regular Sets, Minimization of Finite Automata. 

UNIT-II 

Context Free Grammars and Languages: Context Free Grammars and Languages, 

Derivation Trees, simplification of Context Free Grammars, Normal Forms, Pumping Lemma for 

CFL, Closure properties of CFL’s. 

Push down Automata: Informal Description, Definitions, Push-Down Automata and Context free 

Languages, Parsing and Push-Down Automata 

UNIT-III 

Turing Machines: The Definition of Turing Machine, Design and Techniques for 

Construction of Turing Machines, Combining Turing Machines. 

Universal Turing Machines and Undecidability: Universal Turing Machines. The Halting 

Problem, Decidable & Undecidable Problems - Post Correspondence Problem. 

UNIT-IV 

The Propositional calculus: The Prepositional Calculus : Introduction – Syntax of the 

Prepositional Calculus – Truth-Assignments – Validity and Satisfiability – Equivalence and 

Normal Forms – resolution in Prepositional Calculus. 

The Predicate calculus: Syntax of the Predicate Calculate Calculus – Structures and 

Satisfiability – Equivalence – Un-solvability and NP-Completeness. 



Formal language 

In mathematics, computer science, and linguistics, a formal language is a set of strings of 

symbols that may be constrained by rules that are specific to it. The alphabet of a formal 

language is the set of symbols, letters, or tokens from which the strings of the language may 

be formed; frequently it is required to be finite 

• Theory of Automata 
 

Theory of automata is a theoretical branch of computer science and mathematical. It is the 

study of abstract machines and the computation problems that can be solved using these 

machines. The abstract machine is called the automata. The main motivation behind developing 

the automata theory was to develop methods to describe and analyse the dynamic behaviour of 

discrete systems. 

 

This automaton consists of states and transitions. The State is represented by circles, and the 

Transitions is represented by arrows. 

 

Automata is the kind of machine which takes some string as input and this input goes through 

a finite number of states and may enter in the final state. 

 

A formal language is often defined by means of a formal grammar such as a regular grammar 

or context-free grammar, also called its formation rule.  

 

Alphabet 

• Definition − An alphabet is any finite set of symbols. 

• Example − ∑ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ are symbols. 

String 

• Definition − A string is a finite sequence of symbols taken from ∑. 

• Example − ‘cabcad’ is a valid string on the alphabet set ∑ = {a, b, c, d} 

Length of a String 

• Definition − It is the number of symbols present in a string. (Denoted by |S|). 

• Examples − 

o If S = ‘cabcad’, |S|= 6 

o If |S|= 0, it is called an empty string (Denoted by λ or ε) 

Kleene Star 

• Definition − The Kleene star, ∑*, is a unary operator on a set of symbols or strings, ∑, 

that gives the infinite set of  all  possible  strings  of  all  possible  lengths over 

∑ including λ. 

• Representation − ∑* = ∑0 𝖴 ∑1 𝖴 ∑2 𝖴……. where ∑p is the set of all possible stringsof 

length p. 

• Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb, ............... } 



Kleene Closure / Plus 

• Definition − The set ∑+ is the infinite set of all possible strings of all possible lengths 

over ∑ excluding λ. 

• Representation − ∑+ = ∑1 𝖴 ∑2 𝖴 ∑3 𝖴……. 

∑+ = ∑* − { λ } 

• Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,............... } 

Language 

• Definition − A language is a subset of ∑* for some alphabet ∑. It can be finite or 

infinite. 

• Example − If the language takes all possible strings of length 2 over ∑ = {a, b}, then 

L = { ab, aa, ba, bb } 

Transition Table 

 

The transition table is basically a tabular representation of the transition function. It 

takes two arguments (a state and a symbol) and returns a state (the "next state"). 

 

Example 1: 
 

 

 

 

Solution: 

 

Transition table of given DFA is as follows: 

 

Present State Next state for Input 0 Next State of Input 1 

→q0 q1 q2 

q1 q0 q2 

*q2 q2 q2 

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State 

Machine (FSM). 

Formal definition of a Finite Automaton 

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where − 

• Q is a finite set of states. 



• ∑ is a finite set of symbols, called the alphabet of the automaton. 

• δ is the transition function. 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Finite Automata Model: 

 

Finite automata can be represented by input tape and finite control. 

 

 

 

 

Input tape: It is a linear tape having some number of cells. Each input symbol is placed in 

each cell. 

 

Finite control: The finite control decides the next state on receiving particular input from input 

tape. The tape reader reads the cells one by one from left to right, and at a time only one input 

symbol is read. 

 

• Finite Automaton can be classified into two types − 

 

• Deterministic Finite Automaton (DFA) 

• Non-deterministic Finite Automaton (NDFA / NFA) 

Deterministic Finite Automaton (DFA) 

In DFA, for each input symbol, one can determine the state to which the machine will move. 

Hence, it is called Deterministic Automaton. As it has a finite number of states, the machine 

is called Deterministic Finite Machine or Deterministic Finite Automaton. 

Formal Definition of a DFA 

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 



• ∑ is a finite set of symbols called the alphabet. 

• δ is the transition function where δ: Q × ∑ → Q 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Example 

Let a deterministic finite automaton be → 

 

• Q = {a, b, c}, 

• ∑ = {0, 1}, 

• q0 = {a}, 

• F = {c}, and 

 

Transition function δ as shown by the following table – 
 

Present State Next State for Input 0 Next State for Input 1 

a a b 

b c a 

c b c 

Its graphical representation would be as follows – 
 

 

Example 1: 

 

Design a FA with ∑ = {0, 1} accepts the only input 101. 

 

Solution: 

 



In the given solution, we can see that only input 101 will be accepted. Hence, for input 101, 

there is no other path shown for other input. 

 

Example 2: 

 

Design FA with ∑ = {0, 1} accepts even number of 0's and even number of 1's. 

 

Solution: 

 

This FA will consider four different stages for input 0 and input 1. The stages could be: 

 

Example 3: 

 

Design FA with ∑ = {0, 1} accepts the set of all strings with three consecutive 0's. 

 

Solution: 

 

The strings that will be generated for this particular languages are 000, 0001, 1000, 10001, .... 

in which 0 always appears in a clump of 3. The transition graph is as follows: 

 

In NDFA, for a particular input symbol, the machine can move to any combination of the 

states in the machine. In other words, the exact state to which the machine moves cannot be 

determined. Hence, it is called Non-deterministic Automaton. As it has finite number of 

states, the machine is called Non-deterministic Finite Machine or Non-deterministic Finite 

Automaton. 

Formal Definition of an NDFA 

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabets. 

• δ is the transition function where δ: Q × ∑ → 2Q
 



(Here the power set of Q (2Q) has been taken because in case of NDFA, from a state, 

transition can occur to any combination of Q states) 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

 

 

Example 

Let a non-deterministic finite automaton be → 

 

• Q = {a, b, c} 

• ∑ = {0, 1} 

• q0 = {a} 

• F = {c} 

The transition function δ as shown below − 
 

Present State Next State for Input 0 Next State for Input 1 

a a, b b 

b c a, c 

c b, c c 

Its graphical representation would be as follows − 
 

 

 

Acceptors, Classifiers, and Transducers 

Acceptor (Recognizer) 

An automaton that computes a Boolean function is called an acceptor. All the states of an 

acceptor is either accepting or rejecting the inputs given to it. 

Classifier 

A classifier has more than two final states and it gives a single output when it terminates. 



Transducer 

An automaton that produces outputs based on current input and/or previous state is called 

a transducer. Transducers can be of two types − 

• Mealy Machine − The output depends both on the current state and the current input. 

• Moore Machine − The output depends only on the current state. 

Conversion from NFA to DFA 

 

 

Solution: For the given transition diagram we will first construct the transition table. 

 

State 0 1 

→q0 q0 q1 

q1 {q1, q2} q1 

*q2 q2 {q1, q2} 

 

Now we will obtain δ' transition for state q0. 

 

1. δ'([q0], 0) = [q0] 

2. δ'([q0], 1) = [q1] 

 

The δ' transition for state q1 is obtained as: 

 

1. δ'([q1], 0) = [q1, q2] (new state generated) 

2. δ'([q1], 1) = [q1] 

 

The δ' transition for state q2 is obtained as: 

 

1. δ'([q2], 0) = [q2] 

2. δ'([q2], 1) = [q1, q2] 

 

Now we will obtain δ' transition on [q1, q2]. 

 

1. δ'([q1, q2], 0) = δ(q1, 0) 𝖴 δ(q2, 0) 



= {q1, q2} 𝖴 {q2} 

= [q1, q2] 

2. δ'([q1, q2], 1) = δ(q1, 1) 𝖴 δ(q2, 1) 

= {q1} 𝖴 {q1, q2} 

= {q1, q2} 

= [q1, q2] 

 

The state [q1, q2] is the final state as well because it contains a final state q2. The transition 

table for the constructed DFA will be: 
 

 

State 0 1 

→[q0] [q0] [q1] 

[q1] [q1, q2] [q1] 

*[q2] [q2] [q1, q2] 

*[q1, q2] [q1, q2] [q1, q2] 

 

The Transition diagram will be: 

 

 

 

The state q2 can be eliminated because q2 is an unreachable state. 

 

 

 

Eliminating ε Transitions 

 

NFA with ε can be converted to NFA without ε, and this NFA without ε can be converted to 

DFA. To do this, we will use a method, which can remove all the ε transition from given NFA. 

The method will be: 



1. Find out all the ε transitions from each state from Q. That will be called as ε-closure{q1} 

where qi ∈ Q. 

2. Then δ' transitions can be obtained. The δ' transitions mean a ε-closure on δ moves. 

3. Repeat Step-2 for each input symbol and each state of given NFA. 

4. Using the resultant states, the transition table for equivalent NFA without ε can be built. 

 

Example: 

 

Convert the following NFA with ε to NFA without ε. 

 

 

 

Solutions: We will first obtain ε-closures of q0, q1 and q2 as follows: 

 

1. ε-closure(q0) = {q0} 

2. ε-closure(q1) = {q1, q2} 

3. ε-closure(q2) = {q2} 

 

Now the δ' transition on each input symbol is obtained as: 

 

1. δ'(q0, a) = ε-closure(δ(δ^(q0, ε),a)) 

= ε-closure(δ(ε-closure(q0),a)) 

= ε-closure(δ(q0, a)) 

= ε-closure(q1) 

= {q1, q2} 

 

2. δ'(q0, b) = ε-closure(δ(δ^(q0, ε),b)) 

= ε-closure(δ(ε-closure(q0),b)) 

= ε-closure(δ(q0, b)) 

= Ф 

 

Now the δ' transition on q1 is obtained as: 

 

1. δ'(q1, a) = ε-closure(δ(δ^(q1, ε),a)) 

= ε-closure(δ(ε-closure(q1),a)) 

= ε-closure(δ(q1, q2), a) 



= ε-closure(δ(q1, a) 𝖴 δ(q2, a)) 

= ε-closure(Ф 𝖴 Ф) 

= Ф 

2. δ'(q1, b) = ε-closure(δ(δ^(q1, ε),b)) 

= ε-closure(δ(ε-closure(q1),b)) 

= ε-closure(δ(q1, q2), b) 

= ε-closure(δ(q1, b) 𝖴 δ(q2, b)) 

= ε-closure(Ф 𝖴 q2) 

= {q2} 

 

The δ' transition on q2 is obtained as: 

 

1. δ'(q2, a) = ε-closure(δ(δ^(q2, ε),a)) 

= ε-closure(δ(ε-closure(q2),a)) 

= ε-closure(δ(q2, a)) 

= ε-closure(Ф) 

= Ф 

2. δ'(q2, b) = ε-closure(δ(δ^(q2, ε),b)) 

= ε-closure(δ(ε-closure(q2),b)) 

= ε-closure(δ(q2, b)) 

= ε-closure(q2) 

= {q2} 

 

Now we will summarize all the computed δ' transitions: 

 

1. δ'(q0, a) = {q0, q1} 

2. δ'(q0, b) = Ф 

3. δ'(q1, a) = Ф 

4. δ'(q1, b) = {q2} 

5. δ'(q2, a) = Ф 

6. δ'(q2, b) = {q2} 

 

The transition table can be: 

 

States a b 

→q0 {q1, q2} Ф 

*q1 Ф {q2} 



*q2 Ф {q2} 

 

State q1 and q2 become the final state as ε-closure of q1 and q2 contain the final state q2. 

The NFA can be shown by the following transition diagram: 

 

 

Moore Machine 

 

Moore machine is a finite state machine in which the next state is decided by the current state 

and current input symbol. The output symbol at a given time depends only on the present state 

of the machine. Moore machine can be described by 6 tuples (Q, q0, ∑, O, δ, λ) where, 

 

1. Q: finite set of states 

2. q0: initial state of machine 

3. ∑: finite set of input symbols 

4. O: output alphabet 

5. δ: transition function where Q × ∑ → Q 

6. λ: output function where Q → O 

 

Example 1: 

 

The state diagram for Moore Machine is 

 



Transition table for Moore Machine is: 

 

 

 

Mealy Machine 

 

A Mealy machine is a machine in which output symbol depends upon the present input symbol and 

present state of the machine. In the Mealy machine, the output is represented with each input 

symbol for each state separated by /. The Mealy machine can be described by 6 tuples (Q, q0, 

∑, O, δ, λ') where 

 

1. Q: finite set of states 

2. q0: initial state of machine 

3. ∑: finite set of input alphabet 

4. O: output alphabet 

5. δ: transition function where Q × ∑ → Q 

6. λ': output function where Q × ∑ →O 



The state table of a Mealy Machine is shown below − 

 

 

 

 

Present state 

Next state 

input = 0 input = 1 

State Output State Output 

→ a b x1 c x1 

b b x2 d x3 

c d x3 c x1 

d d x3 d x2 

 

The state diagram of the above Mealy Machine is – 
 

 

Conversion from Mealy machine to Moore Machine 

 

Example 1: 

 

Convert the following Mealy machine into equivalent Moore machine. 



 

 

Solution: 

 

Transition table for above Mealy machine is as follows: 

 

o For state q1, there is only one incident edge with output 0. So, we don't need to split 

this state in Moore machine. 

o For state q2, there is 2 incident edge with output 0 and 1. So, we will split this state into 

two states q20( state with output 0) and q21(with output 1). 

o For state q3, there is 2 incident edge with output 0 and 1. So, we will split this state into 

two states q30( state with output 0) and q31( state with output 1). 

o For state q4, there is only one incident edge with output 0. So, we don't need to split 

this state in Moore machine. 



Transition table for Moore machine will be: 

 

 

 

Transition diagram for Moore machine will be: 

 



Conversion from Moore machine to Mealy Machine 

Example 1: 

Convert the following Moore machine into its equivalent Mealy machine. 

 

 

solution: 

 

The transition table of given Moore machine is as follows: 

 

Q a b Output(λ) 

q0 q0 q1 0 

q1 q0 q1 1 

 

The equivalent Mealy machine can be obtained as follows: 

 

1. λ' (q0, a) = λ(δ(q0, a)) 

= λ(q0) 

= 0 

 

2. λ' (q0, b) = λ(δ(q0, b)) 

= λ(q1) 

= 1 

 

The λ for state q1 is as follows: 

 

1. λ' (q1, a) = λ(δ(q1, a)) 

= λ(q0) 

= 0 

2. λ' (q1, b) = λ(δ(q1, b)) 

= λ(q1) 



= 1 

 

Hence the transition table for the Mealy machine can be drawn as follows: 

 

 

 

The equivalent Mealy machine will be, 
 

 

 

 

 

Regular Expression 

 

o The language accepted by finite automata can be easily described by simple expressions 

called Regular Expressions. It is the most effective way to represent any language. 

o The languages accepted by some regular expression are referred to as Regular 

languages. 

o A regular expression can also be described as a sequence of pattern that defines a string. 

o Regular expressions are used to match character combinations in strings. String 

searching algorithm used this pattern to find the operations on a string. 

Operations on Regular Language 

 

The various operations on regular language are: 



Union: If L and M are two regular languages then their union L U M is also a union. 

 

1. 1. L U M = {s | s is in L or s is in M} 

 

Intersection: If L and M are two regular languages then their intersection is also an 

intersection. 

 

1. 1. L ⋂ M = {st | s is in L and t is in M} 

 

Kleen closure: If L is a regular language then its Kleen closure L1* will also be a regular 

language. 

 

1. 1. L* = Zero or more occurrence of language L. 

Example 1: 

 

Write the regular expression for the language accepting all combinations of a's, over the set ∑ 

= {a} 

 

Solution: 

 

All combinations of a's means a may be zero, single, double and so on. If a is appearing zero 

times, that means a null string. That is we expect the set of {ε, a, aa, aaa, ..... }. So we give a 

regular expression for this as: 

 

1. R = a* 

 

That is Kleen closure of a. 

 

Example 2: 

 

Write the regular expression for the language accepting all combinations of a's except the null 

string, over the set ∑ = {a} 

 

Solution: 

 

The regular expression has to be built for the language 

 

1.  L = {a, aa, aaa, .... } 

This set indicates that there is no null string. So we can denote regular expression as: 

R = a+ 

Example 3: 

 

Write the regular expression for the language accepting all the string containing any number of 

a's and b's. 



Solution: 

 

The regular expression will be: 

 

1. r.e. = (a + b)* 

 

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab, ....... }, any combination of a and b. 

 

The (a + b)* shows any combination with a and b even a null string. 

 

Example 1: 

 

Write the regular expression for the language accepting all the string which are starting with 1 

and ending with 0, over ∑ = {0, 1}. 

 

Solution: 

 

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The r.e. 

is as follows: 

 

1. R = 1 (0+1)* 0 

Example 2: 

 

Write the regular expression for the language starting and ending with a and having any having 

any combination of b's in between. 

 

Solution: 

 

The regular expression will be: 

 

1. R = a b* b 

Example 3: 

 

Write the regular expression for the language starting with a but not having consecutive b's. 

 

Solution: The regular expression has to be built for the language: 

 

1.  L = {a, aba, aab, aba, aaa, abab, ...... } 

 

The regular expression for the above language is: 

 

1. R = {a + ab}* 

Example 4: 

 

Write the regular expression for the language accepting all the string in which any number of 

a's is followed by any number of b's is followed by any number of c's. 



Solution: As we know, any number of a's means a* any number of b's means b*, any number 

of c's means c*. Since as given in problem statement, b's appear after a's and c's appear after 

b's. So the regular expression could be: 

 

1. R = a* b* c* 

Example 5: 

 

Write the regular expression for the language over ∑ = {0} having even length of the string. 

 

Solution: 

 

The regular expression has to be built for the language: 

 

1.  L = {ε, 00, 0000, 000000, ....... } 

 

The regular expression for the above language is: 

 

1. R = (00)* 

Example 6: 

 

Write the regular expression for the language having a string which should have atleast one 0 

and alteast one 1. 

 

Solution: 

 

The regular expression will be: 

 

1. R = [(0 + 1)* 0 (0 + 1)* 1 (0 + 1)*] + [(0 + 1)* 1 (0 + 1)* 0 (0 + 1)*] 

 

 

• Chomsky Hierarchy of Languages 

According to Noam Chomosky, there are four types of grammars − Type 0, Type 1, Type 2, 

and Type 3. The following table shows how they differ from each other − 
 

Grammar 

Type 

Grammar Accepted Language Accepted Automaton 

Type 0 Unrestricted grammar Recursively enumerable 

language 

Turing Machine 

Type 1 Context-sensitive 

grammar 

Context-sensitive language Linear-bounded 

automaton 

Type 2 Context-free grammar Context-free language Pushdown automaton 

Type 3 Regular grammar Regular language Finite state automaton 



 

 
Type 0: Unrestricted Grammar: 

In Type 0 

Type-0 grammars include all formal grammars. Type 0 grammar language are recognized 

by turing machine. These languages are also known as the Recursively Enumerable 

languages 

Grammar Production in the form of 

 

α→β 

where 

α is ( V + T)* V ( V + T)* 

V : Variables 

T : Terminals. 

β is ( V + T )*. 

In type 0 there must be at least one variable on Left side of production. 

For example, 

Sab –> ba 

A –> S. 

Here, Variables are S, A and Terminals a, b. 

Type 1: Context Sensitive Grammar) 

Type-1 grammars generate the context-sensitive languages. The language generated by the 

grammar are recognized by the Linear Bound Automata 

In Type 1 

I. First of all Type 1 grammar should be Type 0. 

II. Grammar Production in the form of 

https://en.wikipedia.org/wiki/Linear_bounded_automaton


α→β 

|α|<=|β| 

i.e count of symbol in α is less than or equal to β 

For Example, 

S –> AB 

AB –> abc 

B –> b 

Type 2: Context Free Grammar: 

Type-2 grammars generate the context-free languages. The language generated by the 

grammar is recognized by a Pushdown automata. 

In Type 2, 

1. First of all it should be Type 1. 

2. Left hand side of production can have only one variable. 

|α| = 1. 

Their is no restriction on β . 

For example, 

S –> AB 

A –> a 

B –> b 

Type 3: Regular Grammar: 

Type-3 grammars generate regular languages. These languages are exactly all languages 

that can be accepted by a finite state automaton. 

Type 3 is most restricted form of grammar. 

Type 3 should be in the given form only : 

V –> VT / T (left-regular grammar) 

or) 

V –> TV /T (right-regular grammar) 

for example: 

S –> a 

 

The above form is called as strictly regular grammar. 

There is another form of regular grammar called extended regular grammar. In this form : 

V –> VT* / T*. (extended left-regular grammar) 

(or) 

V –> T*V /T* (extended right-regular grammar) 

 

for example : 

S –> ab. 

https://www.geeksforgeeks.org/theory-of-computation-pushdown-automata/


• Regular Sets: Any set that represents the value of the Regular Expression is called 

a Regular Set. 

 

Properties of Regular Sets 
 

Property 1. The union of two regular set is regular. 

Proof − 

Let us take two regular expressions 

RE1 = a(aa)* and RE2 = (aa)* 

So, L1 = {a, aaa, aaaaa, ..... } (Strings of odd length excluding Null) 

and L2 ={ ε, aa, aaaa, aaaaaa, ....... } (Strings of even length including Null) 

L1 𝖴 L2 = { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa, ........ } 

(Strings of all possible lengths including Null) 

RE (L1 𝖴 L2) = a* (which is a regular expression itself) 

Hence, proved. 

Property 2. The intersection of two regular set is regular. 

Proof − 

Let us take two regular expressions 

RE1 = a(a*) and RE2 = (aa)* 

So, L1 = { a,aa, aaa, aaaa, .... } (Strings of all possible lengths excluding Null) 

L2 = { ε, aa, aaaa, aaaaaa, ........ } (Strings of even length including Null) 

L1 ∩ L2 = { aa, aaaa, aaaaaa, ....... } (Strings of even length excluding Null) 

RE (L1 ∩ L2) = aa(aa)* which is a regular expression itself. 

Hence, proved. 

Property 3. The complement of a regular set is regular. 

Proof − 

Let us take a regular expression − 

RE = (aa)* 

So, L = {ε, aa, aaaa, aaaaaa, ........ } (Strings of even length including Null) 

Complement of L is all the strings that is not in L. 

So, L’ = {a, aaa, aaaaa, ...... } (Strings of odd length excluding Null) 

RE (L’) = a(aa)* which is a regular expression itself. 

Hence, proved. 

Property 4. The difference of two regular set is regular. 

Proof − 



Let us take two regular expressions − 

RE1 = a (a*) and RE2 = (aa)* 

So, L1 = {a, aa, aaa, aaaa, .... } (Strings of all possible lengths excluding Null) 

L2 = { ε, aa, aaaa, aaaaaa, ........ } (Strings of even length including Null) 

L1 – L2 = {a, aaa, aaaaa, aaaaaaa, ...... } 

(Strings of all odd lengths excluding Null) 

RE (L1 – L2) = a (aa)* which is a regular expression. 

Hence, proved. 

Property 5. The reversal of a regular set is regular. 

Proof − 

We have to prove LR is also regular if L is a regular set. 

Let, L = {01, 10, 11, 10} 

RE (L) = 01 + 10 + 11 + 10 

LR = {10, 01, 11, 01} 

RE (LR) = 01 + 10 + 11 + 10 which is regular 

Hence, proved. 

Property 6. The closure of a regular set is regular. 

Proof − 

If L = {a, aaa, aaaaa, ........ } (Strings of odd length excluding Null) 

i.e., RE (L) = a (aa)* 

L* = {a, aa, aaa, aaaa , aaaaa, ..................... } (Strings of all lengths excluding Null) 

RE (L*) = a (a)* 

Hence, proved. 

Property 7. The concatenation of two regular sets is regular. 

Proof − 

Let RE1 = (0+1)*0 and RE2 = 01(0+1)* 

Here, L1 = {0, 00, 10, 000, 010, ....... } (Set of strings ending in 0) 

and L2 = {01, 010,011,...... } (Set of strings beginning with 01) 

Then, L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010, .................. } 

Set of strings containing 001 as a substring which can be represented by an RE − (0 + 1)*001(0 

+ 1)* 

Hence, proved. 



• Pumping Lemma for Regular Sets: 

Let L be a regular language. Then there exists a constant ‘c’ such that for every string w in L − 

|w| ≥ c 

We can break w into three strings, w = xyz, such that − 

 

• |y| > 0 

• |xy| ≤ c 

• For all k ≥ 0, the string xykz is also in L. 

Applications of Pumping Lemma 

Pumping Lemma is to be applied to show that certain languages are not regular. It should 

never be used to show a language is regular. 

• If L is regular, it satisfies Pumping Lemma. 

• If L does not satisfy Pumping Lemma, it is non-regular. 

Method to prove that a language L is not regular 

• At first, we have to assume that L is regular. 

• So, the pumping lemma should hold for L. 

• Use the pumping lemma to obtain a contradiction − 

o Select w such that |w| ≥ c 

o Select y such that |y| ≥ 1 

o Select x such that |xy| ≤ c 

o Assign the remaining string to z. 

o Select k such that the resulting string is not in L. 

Hence L is not regular. 

Problem 

Prove that L = {aibi | i ≥ 0} is not regular. 

Solution − 

• At first, we assume that L is regular and n is the number of states. 

• Let w = anbn. Thus |w| = 2n ≥ n. 

• By pumping lemma, let w = xyz, where |xy| ≤ n. 

• Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus |y| ≠ 0. 

• Let k = 2. Then xy2z = apa2qarbn. 

• Number of as = (p + 2q + r) = (p + q + r) + q = n + q 

• Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn. 

• Thus, xy2z is not in L. Hence L is not regular. 



• Minimization of Finite Automata 
 

 

Minimization of DFA means reducing the number of states from given FA. Thus, we get the 

FSM(finite state machine) with redundant states after minimizing the FSM. 

 

We have to follow the various steps to minimize the DFA. These are as follows: 

 

Step 1: Remove all the states that are unreachable from the initial state via any set of the 

transition of DFA. 

 

Step 2: Draw the transition table for all pair of states. 

 

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states, 

and T2 contains non-final states. 

 

Step 4: Find similar rows from T1 such that: 

 

1. 1. δ (q, a) = p 

2. 2. δ (r, a) = p 

 

That means, find the two states which have the same value of a and b and remove one of them. 

 

Step 5: Repeat step 3 until we find no similar rows available in the transition table T1. 

 

Step 6: Repeat step 3 and step 4 for table T2 also. 

 

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the 

transition table of minimized DFA. 

 

Example: 

 



 

 

 

 

 

Solution: 

 

Step 1: In the given DFA, q2 and q4 are the unreachable states so remove them. 

 

Step 2: Draw the transition table for the rest of the states. 

 

 
State 0 

 

→q0 q1 
 

q1 q0 
 

*q3 q5 
 

*q5 q5 
 

 

Step 3: Now divide rows of transition table into two sets as: 

 

1. One set contains those rows, which start from non-final states: 

 

 
State 0 

 

q0 q1  

q1 q0 
 

 

2. Another set contains those rows, which starts from final states. 

 

 
State 0 

 

q3 q5  

q5 q5 
 

 

Step 4: Set 1 has no similar rows so set 1 will be the same. 

 



 

 

 

Step 5: In set 2, row 1 and row 2 are similar since q3 and q5 transit to the same state on 0 and 

1. So skip q5 and then replace q5 by q3 in the rest. 

 

 
State 0 

 

q3 q3 
 

 

Step 6: Now combine set 1 and set 2 as: 

 

 
State 0 

 

→q0 q1 
 

q1 q0 
 

*q3 q3 
 

 

Now it is the transition table of minimized DFA. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



• Decision Algorithm for Regular Sets: 
Approximately all the properties are decidable in case of finite automaton. 

(i) Emptiness 

(ii) Non-emptiness 

(iii) Finiteness 

(iv) Infiniteness 

(v) Membership 

(vi) Equality 

These are explained as following below. 

(i) Emptiness and Non-emptiness: 

• Step-1: select the state that cannot be reached from the initial states & delete 

them (remove unreachable states). 

• Step 2: if the resulting machine contains at least one final states, so then the 

finite automata accepts the non-empty language. 

• Step 3: if the resulting machine is free from final state, then finite automata 

accepts empty language. 

(ii) Finiteness and Infiniteness: 

• Step-1: select the state that cannot be reached from the initial state & 

delete them (remove unreachable states). 

• Step-2: select the state from which we cannot reach the final state & 

delete them (remove dead states). 

• Step-3: if the resulting machine contains loops or cycles then the 

finite automata accepts infinite language. 

• Step-4: if the resulting machine do not contain loops or cycles then 

the finite automata accepts infinite language. 

(iii) Membership: 

Membership is a property to verify an arbitrary string is accepted by a finite 

automaton or not i.e. it is a member of the language or not. 

Let M is a finite automata that accepts some strings over an alphabet, and let ‘w’ 

be any string defined over the alphabet, if there exist a transition path in M, 

which starts at initial state & ends in anyone of the final state, then string ‘w’ is 

a member of M, otherwise ‘w’ is not a member of M. 

(iv) Equality: 

Two finite state automata M1 & M2 is said to be equal if and only if, they accept 

the same language. Minimise the finite state automata and the minimal DFA will 

be unique. 

https://www.geeksforgeeks.org/decidable-and-undecidable-problems-in-theory-of-computation/


UNIT-II 

 
Context free grammar 

Context free grammar is a formal grammar which is used to generate all possible 

strings in a given formal language. 

Context free grammar G can be defined by four tuples as: 

G= (V, T, P, S) 

Where, 

G describes the grammar 

T describes a finite set of terminal symbols. 

V describes a finite set of non-terminal symbols 

P describes a set of production rules 

S is the start symbol. 

In CFG, the start symbol is used to derive the string. You can derive the string by 

repeatedly replacing a non-terminal by the right hand side of the production, until 

all non-terminal have been replaced by terminal symbols. 

Example: 

L= {wcwR | w € (a, b)*} 

Production rules: 

1. S → aSa 

2. S → bSb 

3. S → c 

Now check that abbcbba string can be derived from the given CFG. 

1. S ⇒ aSa 

2. S ⇒ abSba 

3. S ⇒ abbSbba 

4. S ⇒ abbcbba 



By applying the production S → aSa, S → bSb recursively and finally applying 

the production S → c, we get the string abbcbba. 

Capabilities of CFG 

There are the various capabilities of CFG: 

o Context free grammar is useful to describe most of the programming 

languages. 

o If the grammar is properly designed then an efficient parser can be 

constructed automatically. 

o Using the features of associatively & precedence information, suitable 

grammars for expressions can be constructed. 

o Context free grammar is capable of describing nested structures like: 

balanced parentheses, matching begin-end, corresponding if-then-else's & 

so on. 

Derivation 

Derivation is a sequence of production rules. It is used to get the input string 

through these production rules. During parsing we have to take two decisions. 

These are as follows: 

o We have to decide the non-terminal which is to be replaced. 

o We have to decide the production rule by which the non-terminal will be 

replaced. 

We have two options to decide which non-terminal to be replaced with production 

rule. 

Draw a derivation tree for the string "bab" from the CFG given by 

 

1. S → bSb | a | b 

Solution: 

Now, the derivation tree for the string "bbabb" is as follows: 



 

 

The above tree is a derivation tree drawn for deriving a string bbabb. By simply 

reading the leaf nodes, we can obtain the desired string. The same tree can also 

be denoted by, 
 

 

 

Left-most Derivation 

In the left most derivation, the input is scanned and replaced with the production 

rule from left to right. So in left most derivatives we read the input string from 

left to right. 

Construct a derivation tree for the string aabbabba for the CFG given by, 

 

1. S → aB | bA 

2. A → a | aS | bAA 

3. B → b | bS | aBB 



Solution: 

To draw a tree, we will first try to obtain derivation for the string aabbabba 

 

Now, the derivation tree is as follows: 

 

 

Right-most Derivation 

In the right most derivation, the input is scanned and replaced with the production 

rule from right to left. So in right most derivatives we read the input string from 

right to left. 



Derive the string "aabbabba" for leftmost derivation and rightmost derivation 

using a CFG given by, 

 

1. S → aB | bA 

2. A → a | aS | bAA 

3. B → b | bS | aBB 

Solution: 

Leftmost derivation: 

 

1. S 

2. aB S → aB 

3. aaBB B → aBB 

4. aabB B → b 

5. aabbS B → bS 

6. aabbaB S → aB 

7. aabbabS B → bS 

8. aabbabbA S → bA 

9. aabbabba A → a 

Rightmost derivation: 

 

1. S 

2. aB S → aB 

3. aaBB B → aBB 

4. aaBbS B → bS 

5. aaBbbA S → bA 

6. aaBbba A → a 

7. aabSbba B → bS 

8. aabbAbba S → bA 

9. aabbabba A → a 

 

 

Simplification of CFG 

As we have seen, various languages can efficiently be represented by a context- 

free grammar. All the grammar are not always optimized that means the grammar 

may consist of some extra symbols(non-terminal). Having extra symbols, 

unnecessary increase the length of grammar. Simplification of grammar means 



reduction of grammar by removing useless symbols. The properties of reduced 

grammar are given below: 

1. Each variable (i.e. non-terminal) and each terminal of G appears in the 

derivation of some word in L. 

2. There should not be any production as X → Y where X and Y are non- 

terminal. 

3. If ε is not in the language L then there need not to be the production X → 

ε. 
 

 

 

Removal of Useless Symbols 

A symbol can be useless if it does not appear on the right-hand side of the 

production rule and does not take part in the derivation of any string. That symbol 

is known as a useless symbol. Similarly, a variable can be useless if it does not 

take part in the derivation of any string. That variable is known as a useless 

variable. 

For Example: 

1. T → aaB | abA | aaT 

2. A → aA 

3. B → ab | b 

4. C → ad 

In the above example, the variable 'C' will never occur in the derivation of any 

string, so the production C → ad is useless. So we will eliminate it, and the other 

productions are written in such a way that variable C can never reach from the 

starting variable 'T'. 

Production A → aA is also useless because there is no way to terminate it. If it 

never terminates, then it can never produce a string. Hence this production can 

never take part in any derivation. 



To remove this useless production A → aA, we will first find all the variables 

which will never lead to a terminal string such as variable 'A'. Then we will 

remove all the productions in which the variable 'B' occurs. 

Elimination of ε Production 

The productions of type S → ε are called ε productions. These type of productions 

can only be removed from those grammars that do not generate ε. 

Step 1: First find out all nullable non-terminal variable which derives ε. 

Step 2: For each production A → a, construct all production A → x, where x is 

obtained from a by removing one or more non-terminal from step 1. 

Step 3: Now combine the result of step 2 with the original production and remove 

ε productions. 

Example: 

Remove the production from the following CFG by preserving the meaning of it. 

1. S → XYX 

2. X → 0X | ε 

3. Y → 1Y | ε 

Solution: 

Now, while removing ε production, we are deleting the rule X → ε and Y → ε. 

To preserve the meaning of CFG we are actually placing ε at the right-hand side 

whenever X and Y have appeared. 

Let us take 

1. S → XYX 

If the first X at right-hand side is ε. Then 

1. S → YX 

Similarly if the last X in R.H.S. = ε. Then 

1. S → XY 

If Y = ε then 



1. S → XX 

If Y and X are ε then, 

1. S → X 

If both X are replaced by ε 

1. S → Y 

Now, 

1. S → XY | YX | XX | X | Y 

Now let us consider 

1. X → 0X 

If we place ε at right-hand side for X then, 

1. X → 0 

2. X → 0X | 0 

Similarly Y → 1Y | 1 

Collectively we can rewrite the CFG with removed ε production as 

1. S → XY | YX | XX | X | Y 
2. X → 0X | 0 

3. Y → 1Y | 1 

Removing Unit Productions 

The unit productions are the productions in which one non-terminal gives another 

non-terminal. Use the following steps to remove unit production: 

Step 1: To remove X → Y, add production X → a to the grammar rule whenever 

Y → a occurs in the grammar. 

Step 2: Now delete X → Y from the grammar. 

Step 3: Repeat step 1 and step 2 until all unit productions are removed. 

For example: 

1. S → 0A | 1B | C 

2. A → 0S | 00 



3. B → 1 | A 

4. C → 01 

Solution: 

S → C is a unit production. But while removing S → C we have to consider what 

C gives. So, we can add a rule to S. 

1. S → 0A | 1B | 01 

Similarly, B → A is also a unit production so we can modify it as 

1. B → 1 | 0S | 00 

Thus finally we can write CFG without unit production as 

1. S → 0A | 1B | 01 

2. A → 0S | 00 
3. B → 1 | 0S | 00 

4. C → 01 

Chomsky's Normal Form (CNF) 

CNF stands for Chomsky normal form. A CFG(context free grammar) is in 

CNF(Chomsky normal form) if all production rules satisfy one of the following 

conditions: 

o Start symbol generating ε. For example, A → ε. 

o A non-terminal generating two non-terminals. For example, S → AB. 

o A non-terminal generating a terminal. For example, S → a. 

For example: 

1. G1 = {S → AB, S → c, A → a, B → b} 

2. G2 = {S → aA, A → a, B → c} 

The production rules of Grammar G1 satisfy the rules specified for CNF, so the 

grammar G1 is in CNF. However, the production rule of Grammar G2 does not 

satisfy the rules specified for CNF as S → aZ contains terminal followed by non- 

terminal. So the grammar G2 is not in CNF. 

Steps for converting CFG into CNF 

Step 1: Eliminate start symbol from the RHS. If the start symbol T is at the right- 

hand side of any production, create a new production as: 



1. S1 → S 

Where S1 is the new start symbol. 

Step 2: In the grammar, remove the null, unit and useless productions. You can 

refer to the Simplification of CFG. 

Step 3: Eliminate terminals from the RHS of the production if they exist with 

other non-terminals or terminals. For example, production S → aA can be 

decomposed as: 

1. S → RA 

2. R → a 

Step 4: Eliminate RHS with more than two non-terminals. For example, S → 

ASB can be decomposed as: 

1. S → RS 

2. R → AS 

Example: 

Convert the given CFG to CNF. Consider the given grammar G1: 

1. S → a | aA | B 

2. A → aBB | ε 

3. B → Aa | b 

Solution: 

Step 1: We will create a new production S1 → S, as the start symbol S appears 

on the RHS. The grammar will be: 

1. S1 → S 

2. S → a | aA | B 

3. A → aBB | ε 

4. B → Aa | b 

Step 2: As grammar G1 contains A → ε null production, its removal from the 

grammar yields: 

1. S1 → S 
2. S → a | aA | B 

3. A → aBB 

4. B → Aa | b | a 

https://www.javatpoint.com/automata-simplification-of-cfg


Now, as grammar G1 contains Unit production S → B, its removal yield: 

1. S1 → S 

2. S → a | aA | Aa | b 

3. A → aBB 

4. B → Aa | b | a 

Also remove the unit production S1 → S, its removal from the grammar yields: 

1. S0 → a | aA | Aa | b 

2. S → a | aA | Aa | b 

3. A → aBB 

4. B → Aa | b | a 

Step 3: In the production rule S0 → aA | Aa, S → aA | Aa, A → aBB and B → 

Aa, terminal a exists on RHS with non-terminals. So we will replace terminal a 

with X: 

1. S0 → a | XA | AX | b 

2. S → a | XA | AX | b 

3. A → XBB 

4. B → AX | b | a 

5. X → a 

Step 4: In the production rule A → XBB, RHS has more than two symbols, 

removing it from grammar yield: 

1. S0 → a | XA | AX | b 

2. S → a | XA | AX | b 

3. A → RB 
4. B → AX | b | a 
5. X → a 

6. R → XB 

Hence, for the given grammar, this is the required CNF. 

Greibach Normal Form (GNF) 

GNF stands for Greibach normal form. A CFG(context free grammar) is in 

GNF(Greibach normal form) if all the production rules satisfy one of the 

following conditions: 

o A start symbol generating ε. For example, S → ε. 

o A non-terminal generating a terminal. For example, A → a. 



o A non-terminal generating a terminal which is followed by any number of 

non-terminals. For example, S → aASB. 

For example: 

1. G1 = {S → aAB | aB, A → aA| a, B → bB | b} 

2. G2 = {S → aAB | aB, A → aA | ε, B → bB | ε} 

The production rules of Grammar G1 satisfy the rules specified for GNF, so the 

grammar G1 is in GNF. However, the production rule of Grammar G2 does not 

satisfy the rules specified for GNF as A → ε and B → ε contains ε(only start 

symbol can generate ε). So the grammar G2 is not in GNF. 

Steps for converting CFG into GNF 

Step 1: Convert the grammar into CNF. 

If the given grammar is not in CNF, convert it into CNF. You can refer the 

following topic to convert the CFG into CNF: Chomsky normal form 

Step 2: If the grammar exists left recursion, eliminate it. 

If the context free grammar contains left recursion, eliminate it. You can refer the 

following topic to eliminate left recursion: Left Recursion 

Step 3: In the grammar, convert the given production rule into GNF form. 

If any production rule in the grammar is not in GNF form, convert it. 

Example: 

1. S → XB | AA 

2. A → a | SA 

3. B → b 

4. X → a 

Solution: 

As the given grammar G is already in CNF and there is no left recursion, so we 

can skip step 1 and step 2 and directly go to step 3. 

The production rule A → SA is not in GNF, so we substitute S → XB | AA in the 

production rule A → SA as: 

1. S → XB | AA 

2. A → a | XBA | AAA 



3. B → b 

4. X → a 

The production rule S → XB and B → XBA is not in GNF, so we substitute X 

→ a in the production rule S → XB and B → XBA as: 

1. S → aB | AA 

2. A → a | aBA | AAA 
3. B → b 

4. X → a 

Now we will remove left recursion (A → AAA), we get: 

1. S → aB | AA 
2. A → aC | aBAC 

3. C → AAC | ε 

4. B → b 

5. X → a 

Now we will remove null production C → ε, we get: 

1. S → aB | AA 

2. A → aC | aBAC | a | aBA 

3. C → AAC | AA 

4. B → b 

5. X → a 

The production rule S → AA is not in GNF, so we substitute A → aC | aBAC | a 

| aBA in production rule S → AA as: 

1. S → aB | aCA | aBACA | aA | aBAA 

2. A → aC | aBAC | a | aBA 

3. C → AAC 

4. C → aCA | aBACA | aA | aBAA 

5. B → b 

6. X → a 

The production rule C → AAC is not in GNF, so we substitute A → aC | aBAC | 

a | aBA in production rule C → AAC as: 

1. S → aB | aCA | aBACA | aA | aBAA 

2. A → aC | aBAC | a | aBA 

3. C → aCAC | aBACAC | aAC | aBAAC 

4. C → aCA | aBACA | aA | aBAA 



5. B → b 

6. X → a 

Hence, this is the GNF form for the grammar G. 

Pumping Lemma for Context-free Languages (CFL) 

Pumping Lemma for CFL states that for any Context Free Language L, it is 

possible to find two substrings that can be ‘pumped’ any number of times and 

still be in the same language. For any language L, we break its strings into five 

parts and pump second and fourth substring. 

Pumping Lemma, here also, is used as a tool to prove that a language is not 

CFL. Because, if any one string does not satisfy its conditions, then the 

language is not CFL. 

Thus, if L is a CFL, there exists an integer n, such that for all x ∈ L with |x| ≥ 

n, there exists u, v, w, x, y ∈ Σ∗, such that x = uvwxy, and 

(1) |vwx| ≤ n 

(2) |vx| ≥ 1 

(3) for all i ≥ 0: uviwxiy ∈ L 
 

For above example, 0n1n is CFL, as any string can be the result of pumping at 

two places, one for 0 and other for 1. 

Let us prove, L012 = {0n1n2n | n ≥ 0} is not Context-free. 

Let us assume that L is Context-free, then by Pumping Lemma, the above 

given rules follow. 

Now, let x ∈ L and |x| ≥ n. So, by Pumping Lemma, there exists u, v, w, x, y 

such that (1) – (3) hold. 

We show that for all u, v, w, x, y (1) – (3) do not hold. 

 
If (1) and (2) hold then x = 0n1n2n = uvwxy with |vwx| ≤ n and |vx| ≥ 1. 

(1) tells us that vwx does not contain both 0 and 2. Thus, either vwx has no 

0’s, or vwx has no 2’s. Thus, we have two cases to consider. 

Suppose vwx has no 0’s. By (2), vx contains a 1 or a 2. Thus uwy has ‘n’ 0’s 

and uwy either has less than ‘n’ 1’s or has less than ‘n’ 2’s. 

But (3) tells us that uwy = uv0wx0y ∈ L. 

So, uwy has an equal number of 0’s, 1’s and 2’s gives us a contradiction. The 



case where vwx has no 2’s is similar and also gives us a contradiction. Thus L 

is not context-free. 

 

Closure Properties of CFL: 

Context-free languages are closed under − 

• Union 

• Concatenation 

• Kleene Star operation 

Union 

Let L1 and L2 be two context free languages. Then L1 𝖴 L2 is also context free. 

Example 

Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab 

Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε 

Union of L1 and L2, L = L1 𝖴 L2 = { anbn } 𝖴 { cmdm } 

The corresponding grammar G will have the additional production S → S1 | S2 

Concatenation 

If L1 and L2 are context free languages, then L1L2 is also context free. 

Example 

Union of the languages L1 and L2, L = L1L2 = { anbncmdm } 

The corresponding grammar G will have the additional production S → S1 S2 

Kleene Star 

If L is a context free language, then L* is also context free. 

Example 

Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε 

Kleene Star L1 = { anbn }* 

The corresponding grammar G1 will have additional productions S1 → SS1 | ε 

Context-free languages are not closed under − 

• Intersection − If L1 and L2 are context free languages, then L1 ∩ L2 is 

not necessarily context free. 

• Intersection with Regular Language − If L1 is a regular language and 

L2 is a context free language, then L1 ∩ L2 is a context free language. 



• Complement − If L1 is a context free language, then L1’ may not be 

context free. 

Push down Automata 

Basic Structure of PDA 

A pushdown automaton is a way to implement a context-free grammar in a 

similar way we design DFA for a regular grammar. A DFA can remember a finite 

amount of information, but a PDA can remember an infinite amount of 

information. 

Basically a pushdown automaton is − 

"Finite state machine" + "a stack" 

A pushdown automaton has three components − 

• an input tape, 

• a control unit, and 

• a stack with infinite size. 

The stack head scans the top symbol of the stack. 

A stack does two operations − 

• Push − a new symbol is added at the top. 

• Pop − the top symbol is read and removed. 

A PDA may or may not read an input symbol, but it has to read the top of the 

stack in every transition. 
 



PDA can be formally described as a 7-tuple (Q, ∑, S, δ, q0, I, F) − 

• Q is the finite number of states 

• ∑ is input alphabet 

• S is stack symbols 

• δ is the transition function: Q × (∑ 𝖴 {ε}) × S × Q × S* 

• q0 is the initial state (q0 ∈ Q) 

• I is the initial stack top symbol (I ∈ S) 

• F is a set of accepting states (F ∈ Q) 

Instantaneous Description (ID) 

ID is an informal notation of how a PDA computes an input string and make a 

decision that string is accepted or rejected 

An instantaneous description is a triple (q, w, α) where: 

q describes the current state. 

w describes the remaining input. 

α describes the stack contents, top at the left. 

The following diagram shows a transition in a PDA from a state q1 to state q2, 

labeled as a,b → c − 
 

This means at state q1, if we encounter an input string ‘a’ and top symbol of the 

stack is ‘b’, then we pop ‘b’, push ‘c’ on top of the stack and move to state q2. 



There are two different ways to define PDA acceptability. 

Final State Acceptability 

In final state acceptability, a PDA accepts a string when, after reading the entire 

string, the PDA is in a final state. From the starting state, we can make moves 

that end up in a final state with any stack values. The stack values are irrelevant 

as long as we end up in a final state. 

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the set of final states 

F is − 

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, x), q ∈ F} 

for any input stack string x. 

Empty Stack Acceptability 

Here a PDA accepts a string when, after reading the entire string, the PDA has 

emptied its stack. 

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the empty stack is − 

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, ε), q ∈ Q} 

Push-Down Automata and Context free Languages 

If a grammar G is context-free, we can build an equivalent nondeterministic 

PDA which accepts the language that is produced by the context-free grammar 
G. A parser can be built for the grammar G. 

Also, if P is a pushdown automaton, an equivalent context-free grammar G can 

be constructed where 

L(G) = L(P) 

Algorithm to find PDA corresponding to a given CFG 

Input − A CFG, G = (V, T, P, S) 

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) 

Step 1 − Convert the productions of the CFG into GNF. 

Step 2 − The PDA will have only one state {q}. 

Step 3 − The start symbol of CFG will be the start symbol in the PDA. 

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and 

all the terminals of the CFG will be the input symbols of the PDA. 

Step 5 − For each production in the form A → aX where a is terminal and A, 

X are combination of terminal and non-terminals, make a transition δ (q, a, A). 



Example 1: 

Convert the following grammar to a PDA that accepts the same language. 

 

1. S → 0S1 | A 

2. A → 1A0 | S | ε 

Solution: 

The CFG can be first simplified by eliminating unit productions: 

 

1. S → 0S1 | 1S0 | ε 

Now we will convert this CFG to GNF: 

 

1. S → 0SX | 1SY | ε 

2. X → 1 

3. Y → 0 

The PDA can be: 

R1: δ(q, ε, S) = {(q, 0SX) | (q, 1SY) | (q, ε)} 

R2: δ(q, ε, X) = {(q, 1)} 

R3: δ(q, ε, Y) = {(q, 0)} 

R4: δ(q, 0, 0) = {(q, ε)} 

R5: δ(q, 1, 1) = {(q, ε)} 

Algorithm to find CFG corresponding to a given PDA 

Input − A CFG, G = (V, T, P, S) 

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) such that the non- terminals 

of the grammar G will be {Xwx | w,x ∈ Q} and the start state will be Aq0,F. 

Step 1 − For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, 

m) and (z, b, m) contains (x, ε), add the production rule Xwx → a Xyzb in grammar 

G. 

Step 2 − For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in 

grammar G. 

Step 3 − For w ∈ Q, add the production rule Xww → ε in grammar G. 



Parsing and Push-Down Automata 

Parsing is used to derive a string using the production rules of a grammar. It is 

used to check the acceptability of a string. Compiler is used to check whether or 

not a string is syntactically correct. A parser takes the inputs and builds a parse 

tree. 

A parser can be of two types − 

• Top-Down Parser − Top-down parsing starts from the top with the start- 

symbol and derives a string using a parse tree. 

• Bottom-Up Parser − Bottom-up parsing starts from the bottom with the 

string and comes to the start symbol using a parse tree. 

Design of Top-Down Parser 

For top-down parsing, a PDA has the following four types of transitions − 

• Pop the non-terminal on the left hand side of the production at the top of 

the stack and push its right-hand side string. 

• If the top symbol of the stack matches with the input symbol being read, 

pop it. 

• Push the start symbol ‘S’ into the stack. 

• If the input string is fully read and the stack is empty, go to the final state 

‘F’. 

Example 

Design a top-down parser for the expression "x+y*z" for the grammar G with 

the following production rules − 

P: S → S+X | X, X → X*Y | Y, Y → (S) | id 

Solution 

If the PDA is (Q, ∑, S, δ, q0, I, F), then the top-down parsing is − 

(x+y*z, I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI) 

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI) 

⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I) 

 

Design of a Bottom-Up Parser 

For bottom-up parsing, a PDA has the following four types of transitions − 

• Push the current input symbol into the stack. 



• Replace the right-hand side of a production at the top of the stack with its 

left-hand side. 

• If the top of the stack element matches with the current input symbol, pop 

it. 

• If the input string is fully read and only if the start symbol ‘S’ remains in 

the stack, pop it and go to the final state ‘F’. 

Example 

• Design a top-down parser for the expression "x+y*z" for the grammar G 

with the following production rules − 

• P: S → S+X | X, X → X*Y | Y, Y → (S) | id 

• Solution 

• If the PDA is (Q, ∑, S, δ, q0, I, F), then the bottom-up parsing is − 

• (x+y*z, I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI) 

• ⊢(y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI) 

• ⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI) 

 

 

 

 

******************* 



UNIT-III 

 

Turing Machines 

Turing Machine was invented by Alan Turing in 1936 and it is used to accept 

Recursive Enumerable Languages (generated by Type-0 Grammar) 

Definition 

A Turing Machine (TM) is a mathematical model which consists of an infinite 

length tape divided into cells on which input is given. It consists of a head which 

reads the input tape. A state register stores the state of the Turing machine. After 

reading an input symbol, it is replaced with another symbol, its internal state is 

changed, and it moves from one cell to the right or left. If the TM reaches the 

final state, the input string is accepted, otherwise rejected. 

There are various features of the Turing machine: 

 

1. It has an external memory which remembers arbitrary long sequence of 

input. 

2. It has unlimited memory capability. 

3. The model has a facility by which the input at left or right on the tape can 

be read easily. 

4. The machine can produce a certain output based on its input. Sometimes it 

may be required that the same input has to be used to generate the output. 

So in this machine, the distinction between input and output has been 

removed. Thus a common set of alphabets can be used for the Turing 

machine. 

A TM is expressed as a 7-tuple (Q, T, B, ∑, δ, q0, F) where: 

 

• Q is a finite set of states 

• T is the tape alphabet (symbols which can be written on Tape) 

• B is blank symbol (every cell is filled with B except input alphabet 

initially) 
• ∑ is the input alphabet (symbols which are part of input alphabet) 

• δ is a transition function which maps Q × T → Q × T × {L,R}. 

Depending on its present state and present tape alphabet (pointed by 



head pointer), it will move to new state, change the tape symbol (may 

or may not) and move head pointer to either left or right. 

• q0 is the initial state 

• F is the set of final states. If any state of F is reached, input string is 

accepted. 

Example of Turing machine 

Turing machine M = (Q, X, ∑, δ, q0, B, F) with 

• Q = {q0, q1, q2, qf} 

• X = {a, b} 

• ∑ = {1} 

• q0 = {q0} 

• B = blank symbol 

• F = {qf } 

δ is given by − 

Tape alphabet symbol Present State ‘q0’ Present State ‘q1’ Present State ‘q2’ 

a 1Rq1 1Lq0 1Lqf 

b 1Lq2 1Rq1 1Rqf 

Here the transition 1Rq1 implies that the write symbol is 1, the tape moves right, 

and the next state is q1. Similarly, the transition 1Lq2 implies that the write 

symbol is 1, the tape moves left, and the next state is q2. 

 

 

Time and Space Complexity of a Turing Machine 

For a Turing machine, the time complexity refers to the measure of the number 

of times the tape moves when the machine is initialized for some input symbols 

and the space complexity is the number of cells of the tape written. 

Time complexity all reasonable functions − 

T(n) = O(n log n) 

TM's space complexity − 

S(n) = O(n) 



A TM accepts a language if it enters into a final state for any input string w. A 

language is recursively enumerable (generated by Type-0 grammar) if it is 

accepted by a Turing machine. 

A TM decides a language if it accepts it and enters into a rejecting state for any 

input not in the language. A language is recursive if it is decided by a Turing 

machine. 

There may be some cases where a TM does not stop. Such TM accepts the 

language, but it does not decide it. 

Designing a Turing Machine 

The basic guidelines of designing a Turing machine have been explained below 

with the help of a couple of examples. 

Example 1 

Design a TM to recognize all strings consisting of an odd number of α’s. 

Solution 

The Turing machine M can be constructed by the following moves − 

• Let q1 be the initial state. 

• If M is in q1; on scanning α, it enters the state q2 and writes B (blank). 

• If M is in q2; on scanning α, it enters the state q1 and writes B (blank). 

• From the above moves, we can see that M enters the state q1 if it scans an 

even number of α’s, and it enters the state q2 if it scans an odd number of 

α’s. Hence q2 is the only accepting state. 

Hence, 

M = {{q1, q2}, {1}, {1, B}, δ, q1, B, {q2}} 

where δ is given by − 
 

Tape alphabet symbol Present State ‘q1’ Present State ‘q2’ 

α BRq2 BRq1 

Example 2 

Design a Turing Machine that reads a string representing a binary number and 

erases all leading 0’s in the string. However, if the string comprises of only 0’s, 

it keeps one 0. 



Solution 

Let us assume that the input string is terminated by a blank symbol, B, at each 

end of the string. 

The Turing Machine, M, can be constructed by the following moves − 

• Let q0 be the initial state. 

• If M is in q0, on reading 0, it moves right, enters the state q1 and erases 0. 

On reading 1, it enters the state q2 and moves right. 

• If M is in q1, on reading 0, it moves right and erases 0, i.e., it replaces 0’s 

by B’s. On reaching the leftmost 1, it enters q2 and moves right. If it 

reaches B, i.e., the string comprises of only 0’s, it moves left and enters 

the state q3. 

• If M is in q2, on reading either 0 or 1, it moves right. On reaching B, it 

moves left and enters the state q4. This validates that the string comprises 
only of 0’s and 1’s. 

• If M is in q3, it replaces B by 0, moves left and reaches the final state qf. 

• If M is in q4, on reading either 0 or 1, it moves left. On reaching the 

beginning of the string, i.e., when it reads B, it reaches the final state qf. 

Hence, 

M = {{q0, q1, q2, q3, q4, qf}, {0,1, B}, {1, B}, δ, q0, B, {qf}} 

where δ is given by − 
 

Tape 

alphabet 

symbol 

Present 

State ‘q0’ 

Present 

State ‘q1’ 

Present 

State ‘q2’ 

Present 

State ‘q3’ 

Present 

State ‘q4’ 

0 BRq1 BRq1 ORq2 - OLq4 

1 1Rq2 1Rq2 1Rq2 - 1Lq4 

B BRq1 BLq3 BLq4 OLqf BRqf 



Construction of Turing Machines 

Example 1: 

Construct a TM for the language L = {0n1n2n} where n≥1 

Solution: 

L = {0n1n2n | n≥1} represents language where we use only 3 character, i.e., 0, 1 

and 2. In this, some number of 0's followed by an equal number of 1's and then 

followed by an equal number of 2's. Any type of string which falls in this category 

will be accepted by this language. 

The simulation for 001122 can be shown as below: 

 6.8M 

98 

SQL CREATE TABLE 

Next 

Now, we will see how this Turing machine will work for 001122. Initially, state 

is q0 and head points to 0 as: 
 

 

The move will be δ(q0, 0) = δ(q1, A, R) which means it will go to state q1, 

replaced 0 by A and head will move to the right as: 
 

 

The move will be δ(q1, 0) = δ(q1, 0, R) which means it will not change any 

symbol, remain in the same state and move to the right as: 
 



The move will be δ(q1, 1) = δ(q2, B, R) which means it will go to state q2, 

replaced 1 by B and head will move to right as: 
 

 

The move will be δ(q2, 1) = δ(q2, 1, R) which means it will not change any 

symbol, remain in the same state and move to right as: 
 

 

The move will be δ(q2, 2) = δ(q3, C, R) which means it will go to state q3, 

replaced 2 by C and head will move to right as: 
 

 

Now move δ(q3, 2) = δ(q3, 2, L) and δ(q3, C) = δ(q3, C, L) and δ(q3, 1) = δ(q3, 

1, L) and δ(q3, B) = δ(q3, B, L) and δ(q3, 0) = δ(q3, 0, L), and then move δ(q3, 

A) = δ(q0, A, R), it means will go to state q0, replaced A by A and head will 

move to right as: 
 

 

The move will be δ(q0, 0) = δ(q1, A, R) which means it will go to state q1, 

replaced 0 by A, and head will move to right as: 
 

 

The move will be δ(q1, B) = δ(q1, B, R) which means it will not change any 

symbol, remain in the same state and move to right as: 



 

 

The move will be δ(q1, 1) = δ(q2, B, R) which means it will go to state q2, 

replaced 1 by B and head will move to right as: 
 

 

The move will be δ(q2, C) = δ(q2, C, R) which means it will not change any 

symbol, remain in the same state and move to right as: 
 

 

The move will be δ(q2, 2) = δ(q3, C, L) which means it will go to state q3, 

replaced 2 by C and head will move to left until we reached A as: 
 

 

immediately before B is A that means all the 0's are market by A. So we will 

move right to ensure that no 1 or 2 is present. The move will be δ(q2, B) = (q4, 

B, R) which means it will go to state q4, will not change any symbol, and move 

to right as: 
 

 

The move will be (q4, B) = δ(q4, B, R) and (q4, C) = δ(q4, C, R) which means it 

will not change any symbol, remain in the same state and move to right as: 



 

 

The move δ(q4, X) = (q5, X, R) which means it will go to state q5 which is the 

HALT state and HALT state is always an accept state for any TM. 
 

 

The same TM can be represented by Transition Diagram: 
 

Example 2: 

Construct a TM machine for checking the palindrome of the string of even length. 

Solution: 

Firstly we read the first symbol from the left and then we compare it with the first 

symbol from right to check whether it is the same. 



Again we compare the second symbol from left with the second symbol from 

right. We repeat this process for all the symbols. If we found any symbol not 

matching, we cannot lead the machine to HALT state. 

Suppose the string is ababbabaΔ. The simulation for ababbabaΔ can be shown as 

follows: 
 

Now, we will see how this Turing machine will work for ababbabaΔ. Initially, 

state is q0 and head points to a as: 
 

 

We will mark it by * and move to right end in search of a as: 
 

 

We will move right up to Δ as: 
 

 

We will move left and check if it is a: 
 

 

It is 'a' so replace it by Δ and move left as: 



 

 

Now move to left up to * as: 
 

 

Move right and read it 
 

 

Now convert b by * and move right as: 
 

 

Move right up to Δ in search of b as: 
 

 

Move left, if the symbol is b then convert it into Δ as: 
 

 

Now move left until * as: 



 

 

Replace a by * and move right up to Δ as: 
 

 

We will move left and check if it is a, then replace it by Δ as: 
 

 

It is 'a' so replace it by Δ as: 
 

 

Now move left until * 
 

 

Now move right as: 
 

 

Replace b by * and move right up to Δ as: 



 

 

Move left, if the left symbol is b, replace it by Δ as: 
 

 

Move left till * 
 

 

Move right and check whether it is Δ 
 

 

Go to HALT state 
 

 

The same TM can be represented by Transition Diagram: 



 

 

Types of Turing Machines 

1. Multi-tape Turing Machines: 

Multi-tape Turing Machines have multiple tapes where each tape is accessed 

with a separate head. Each head can move independently of the other heads. 

Initially the input is on tape 1 and others are blank. At first, the first tape is 

occupied by the input and the other tapes are kept blank. Next, the machine reads 

consecutive symbols under its heads and the TM prints a symbol on each tape 

and moves its heads. 
 



A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, δ, 

q0, F) where − 

• Q is a finite set of states 

• X is the tape alphabet 

• B is the blank symbol 

• δ is a relation on states and symbols where 

δ: Q × Xk → Q × (X × {Left_shift, Right_shift, No_shift })k 

where there is k number of tapes 

• q0 is the initial state 

• F is the set of final states 

Note − Every Multi-tape Turing machine has an equivalent single-tape Turing 

machine. 

2. Multi-track Turing machines : 

Multi-track Turing machines, a specific type of Multi-tape Turing machine, 

contain multiple tracks but just one tape head reads and writes on all tracks. Here, 

a single tape head reads n symbols from n tracks at one step. It accepts 

recursively enumerable languages like a normal single-track single-tape Turing 

Machine accepts. 

A Multi-track Turing machine can be formally described as a 6-tuple (Q, X, ∑, 

δ, q0, F) where − 

• Q is a finite set of states 

• X is the tape alphabet 

• ∑ is the input alphabet 

• δ is a relation on states and symbols where 

δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3, ... ], Left_shift or Right_shift) 

• q0 is the initial state 

• F is the set of final states 

Note − For every single-track Turing Machine S, there is an equivalent multi- 

track Turing Machine M such that L(S) = L(M). 

3. Non-Deterministic Turing Machine : 

In a Non-Deterministic Turing Machine, for every state and symbol, there are a 

group of actions the TM can have. So, here the transitions are not deterministic. 



The computation of a non-deterministic Turing Machine is a tree of 

configurations that can be reached from the start configuration. 

An input is accepted if there is at least one node of the tree which is an accept 

configuration, otherwise it is not accepted. If all branches of the computational 

tree halt on all inputs, the non-deterministic Turing Machine is calleda 

Decider and if for some input, all branches are rejected, the input is also rejected. 

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q, X, 

∑, δ, q0, B, F) where − 

• Q is a finite set of states 

• X is the tape alphabet 

• ∑ is the input alphabet 

• δ is a transition function; 

δ : Q × X → P(Q × X × {Left_shift, Right_shift}). 

• q0 is the initial state 

• B is the blank symbol 

• F is the set of final states 

4. Turing Machine with a semi-infinite tape : 

A Turing Machine with a semi-infinite tape has a left end but no right end. The 

left end is limited with an end marker. 
 

It is a two-track tape − 

• Upper track − It represents the cells to the right of the initial head 

position. 

• Lower track − It represents the cells to the left of the initial head position 

in reverse order. 

The infinite length input string is initially written on the tape in contiguous tape 

cells. 



The machine starts from the initial state q0 and the head scans from the left end 

marker ‘End’. In each step, it reads the symbol on the tape under its head. It 

writes a new symbol on that tape cell and then it moves the head either into left 

or right one tape cell. A transition function determines the actions to be taken. 

It has two special states called accept state and reject state. If at any point of 

time it enters into the accepted state, the input is accepted and if it enters into the 

reject state, the input is rejected by the TM. In some cases, it continues to run 

infinitely without being accepted or rejected for some certain input symbols. 

Note − Turing machines with semi-infinite tape are equivalent to standard 

Turing machines. 

 

 

Universal Turing Machines 

The Turing Machine (TM) is the machine level equivalent to a digital computer. 

It was suggested by the mathematician Turing in the year 1930 and has become 

the most widely used model of computation in computability and complexity 

theory. 

The model consists of an input and output. The input is given in binary format 

form on to the machine’s tape and the output consists of the contents of the tape 

when the machine halts 

The problem with the Turing machine is that a different machine must be 

constructed for every new computation to be performed for every input output 

relation. 

This is the reason the Universal Turing machine was introduced which along with 

input on the tape takes the description of a machine M. 

The Universal Turing machine can go on then to simulate M on the rest of the 

content of the input tape. 

A Universal Turing machine can thus simulate any other machine. 

The idea of connecting multiple Turing machine gave an idea to Turing − 

• Can a Universal machine be created that can ‘simulate’ other machines? 

• This machine is called as Universal Turing Machine 

This machine would have three bits of information for the machine it is simulating 

• A basic description of the machine. 

• The contents of machine tape. 



• The internal state of the machine. 

The Universal machine would simulate the machine by looking at the input on 

the tape and the state of the machine. 

It would control the machine by changing its state based on the input. This leads 

to the idea of a “computer running another computer”. 

It would control the machine by changing its state based on the input. This leads 

to the idea of a “computer running another computer”. 

The schematic diagram of the Universal Turing Machine is as follows − 

 

 

The Halting Problem 

Input − A Turing machine and an input string w. 

Problem − Does the Turing machine finish computing of the string w in a finite 

number of steps? The answer must be either yes or no. 

Proof − At first, we will assume that such a Turing machine exists to solve this 

problem and then we will show it is contradicting itself. We will call this Turing 

machine as a Halting machine that produces a ‘yes’ or ‘no’ in a finite amount 

of time. If the halting machine finishes in a finite amount of time, the output 

comes as ‘yes’, otherwise as ‘no’. The following is the block diagram of a 

Halting machine − 



 

Now we will design an inverted halting machine (HM)’ as − 

• If H returns YES, then loop forever. 

• If H returns NO, then halt. 

The following is the block diagram of an ‘Inverted halting machine’ − 
 

Further, a machine (HM)2 which input itself is constructed as follows − 

• If (HM)2 halts on input, loop forever. 

• Else, halt. 

Here, we have got a contradiction. Hence, the halting problem is undecidable. 

Decidable & Undecidable Problems 

A language is called Decidable or Recursive if there is a Turing machine which 

accepts and halts on every input string w. Every decidable language is Turing- 

Acceptable. 



 

A decision problem P is decidable if the language L of all yes instances to P is 

decidable. 

For a decidable language, for each input string, the TM halts either at the accept 

or the reject state as depicted in the following diagram − 
 

Example 1 

Find out whether the following problem is decidable or not − 

Is a number ‘m’ prime? 

Solution 

Prime numbers = {2, 3, 5, 7, 11, 13, ................... } 

Divide the number ‘m’ by all the numbers between ‘2’ and ‘√m’ starting from 

‘2’. 



If any of these numbers produce a remainder zero, then it goes to the “Rejected 

state”, otherwise it goes to the “Accepted state”. So, here the answer could be 

made by ‘Yes’ or ‘No’. 

Hence, it is a decidable problem. 

For an undecidable language, there is no Turing Machine which accepts the 

language and makes a decision for every input string w (TM can make decision 

for some input string though). A decision problem P is called “undecidable” if 

the language L of all yes instances to P is not decidable. Undecidable languages 

are not recursive languages, but sometimes, they may be recursively enumerable 

languages. 
 

Example 

• The halting problem of Turing machine 

• The mortality problem 

• The mortal matrix problem 

• The Post correspondence problem, etc. 

The Post correspondence problem 

The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an 

undecidable decision problem. The PCP problem over an alphabet ∑ is stated as 

follows − 

• Given the following two lists, M and N of non-empty strings over ∑ − 

• M = (x1, x2, x3,………, xn) 

• N = (y1, y2, y3,………, yn) 



• We can say that there is a Post Correspondence Solution, if for some 

i1,i2,………… ik, where 1 ≤ ij ≤ n, the condition xi1 …….xik = yi1 
…….yik satisfies. 

• Example 1 

• Find whether the lists 

• M = (abb, aa, aaa) and N = (bba, aaa, aa) 

• have a Post Correspondence Solution? 

• Solution 

 
x1 x2 x3 

M Abb aa aaa 

N Bba aaa aa 

• Here, 

• x2x1x3 = ‘aaabbaaa’ 

• and y2y1y3 = ‘aaabbaaa’ 

• We can see that 

• x2x1x3 = y2y1y3 

• Hence, the solution is i = 2, j = 1, and k = 3. 

• Example 2 

• Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a 

Post Correspondence Solution? 

• Solution 

 
x1 x2 x3 

M ab bab bbaaa 

N a ba bab 

• In this case, there is no solution because − 



• | x2x1x3 | ≠ | y2y1y3 | (Lengths are not same) 

• Hence, it can be said that this Post Correspondence Problem 

is undecidable. 



UNIT-IV 
 

 

Propositional calculus 

A proposition is the basic building block of logic. It is defined as a declarative 

sentence  that  is  either  True  or  False,  but  not  both. The 

Truth Value of a proposition is True(denoted as T) if it is a true statement, and 

False(denoted as F) if it is a false statement. 

To represent propositions, propositional variables are used. By Convention, 

these variables are represented by small alphabets such as  . 

The area of logic which deals with propositions is called propositional calculus 

or propositional logic. 

It also includes producing new propositions using existing ones. Propositions 

constructed using one or more propositions are called compound propositions. 

The propositions are combined together using Logical Connectives or Logical 

Operators. 

Syntax of propositional logic: 

The syntax of propositional logic defines the allowable sentences for the 

knowledge representation. There are two types of Propositions: 

a. Atomic Propositions 

b. Compound propositions 

o Atomic Proposition: Atomic propositions are the simple propositions. It 

consists of a single proposition symbol. These are the sentences which 

must be either true or false. 

o Example: 

 

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact. 

2. b) "The Sun is cold" is also a proposition as it is a false fact. 

o Compound proposition: Compound propositions are constructed by 

combining simpler or atomic propositions, using parenthesis and logical 

connectives. 

Example: 



1. a) "It is raining today, and street is wet." 

2. b) "Ankit is a doctor, and his clinic is in Mumbai." 

Truth-Assignments 

In propositional logic generally we use five connectives which are − 

• OR (∨∨) 

• AND (𝖠𝖠) 

• Negation/ NOT (¬¬) 

• Implication / if-then (→→) 

• If and only if (⇔⇔). 

OR (∨∨) − The OR operation of two propositions A and B (written 

as A∨BA∨B) is true if at least any of the propositional variable A or B is true. 

The truth table is as follows − 

A B A ∨ B 

True True True 

True False True 

False True True 

False False False 

AND (𝖠𝖠) − The AND operation of two propositions A and B (written 

as A𝖠BA𝖠B) is true if both the propositional variable A and B is true. 

The truth table is as follows − 
 

A B A 𝖠 B 

True True True 

True False False 

False True False 



False False False 

Negation (¬¬) − The negation of a proposition A (written as ¬A¬A) is false 

when A is true and is true when A is false. 

The truth table is as follows − 
 

A ¬ A 

True False 

False True 

Implication / if-then (→→) − An implication A→B A→B is the proposition 

“if A, then B”. It is false if A is true and B is false. The rest cases are true. 

The truth table is as follows − 
 

A B A → B 

True True True 

True False False 

False True True 

False False True 

If and only if (⇔⇔) − A⇔BA⇔B is bi-conditional logical connective which 

is true when p and q are same, i.e. both are false or both are true. 

The truth table is as follows − 
 

A B A ⇔ B 

True True True 

True False False 



False True False 

False False True 

 

Tautologies 

A Tautology is a formula which is always true for every value of its 

propositional variables. 

Example − Prove [(A→B)𝖠A]→B[(A→B)𝖠A]→B is a tautology 

The truth table is as follows − 

A B A → B (A → B) 𝖠 A [( A → B ) 𝖠 A] → B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

 

As we can see every value of [(A→B)𝖠A]→B[(A→B)𝖠A]→B is "True", it is a 

tautology. 

Contradictions 

A Contradiction is a formula which is always false for every value of its 

propositional variables. 

Example − Prove (A∨B)𝖠[(¬A)𝖠(¬B)](A∨B)𝖠[(¬A)𝖠(¬B)] is a contradiction 

The truth table is as follows – 



A B A ∨ 

B 

¬ A ¬ B (¬ A) 𝖠 ( ¬ 

B) 

(A ∨ B) 𝖠 [( ¬ A) 𝖠 (¬ 

B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

 

As we can see every value of (A∨B)𝖠[(¬A)𝖠(¬B)](A∨B)𝖠[(¬A)𝖠(¬B)] is 

“False”, it is a contradiction. 

Contingency 

A Contingency is a formula which has both some true and some false values 

for every value of its propositional variables. 

Example − Prove (A∨B)𝖠(¬A)(A∨B)𝖠(¬A) a contingency 

The truth table is as follows − 

A B A ∨ B ¬ A (A ∨ B) 𝖠 (¬ A) 

True True True False False 

True False True False False 

False True True True True 

False False False True False 

 



A B A ∨ B ¬ (A ∨ B) ¬ A ¬ B [(¬ A) 𝖠 (¬ B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

As we can see every value of (A∨B)𝖠(¬A)(A∨B)𝖠(¬A) has both “True” and 

“False”, it is a contingency. 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two 

conditions hold − 

• The truth tables of each statement have the same truth values. 

• The bi-conditional statement X⇔YX⇔Y is a tautology. 

Example − Prove ¬(A∨B)and[(¬A)𝖠(¬B)]¬(A∨B)and[(¬A)𝖠(¬B)] are 

equivalent 

Testing by 1st method (Matching truth table) 

 

Here, we can see the truth values 

of ¬(A∨B)and[(¬A)𝖠(¬B)]¬(A∨B)and[(¬A)𝖠(¬B)] are same, hence the 

statements are equivalent. 



 

A B ¬ (A ∨ B ) [(¬ A) 𝖠 (¬ B)] [¬ (A ∨ B)] ⇔ [(¬ A ) 𝖠 (¬ B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 

Testing by 2nd method (Bi-conditionality) 

 

As [¬(A∨B)]⇔[(¬A)𝖠(¬B)][¬(A∨B)]⇔[(¬A)𝖠(¬B)] is a tautology, the 

statements are equivalent. 

Inverse, Converse, and Contra-positive 

Implication / if-then (→)(→) is also called a conditional statement. It has two 

parts − 

• Hypothesis, p 

• Conclusion, q 

As mentioned earlier, it is denoted as p→qp→q. 

Example of Conditional Statement − “If you do your homework, you will not 

be punished.” Here, "you do your homework" is the hypothesis, p, and "you will 

not be punished" is the conclusion, q. 

Inverse − An inverse of the conditional statement is the negation of both the 

hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will 

be “If not p, then not q”. Thus the inverse of p→qp→q is ¬p→¬q¬p→¬q. 

Example − The inverse of “If you do your homework, you will not be punished” 

is “If you do not do your homework, you will be punished.” 



Converse − The converse of the conditional statement is computed by 

interchanging the hypothesis and the conclusion. If the statement is “If p, then 

q”, the converse will be “If q, then p”. The converse of p→qp→q is q→pq→p. 

Example − The converse of "If you do your homework, you will not be 

punished" is "If you will not be punished, you do your homework”. 

Contra-positive − The contra-positive of the conditional is computed by 

interchanging the hypothesis and the conclusion of the inverse statement. If the 

statement is “If p, then q”, the contra-positive will be “If not q, then not p”. The 

contra-positive of p→qp→q is ¬q→¬p¬q→¬p. 

Example − The Contra-positive of " If you do your homework, you will not be 

punished” is "If you are punished, you did not do your homework”. 

Duality Principle 

Duality principle states that for any true statement, the dual statement obtained 

by interchanging unions into intersections (and vice versa) and interchanging 

Universal set into Null set (and vice versa) is also true. If dual of any statement 

is the statement itself, it is said self-dual statement. 

Example − The dual of (A∩B)𝖴C(A∩B)𝖴C is (A𝖴B)∩C(A𝖴B)∩C 

Normal Forms 

We can convert any proposition in two normal forms − 

 

• Conjunctive normal form 

• Disjunctive normal form 

 

Conjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by 

operating AND among variables (negation of variables included) connected with 

ORs. In terms of set operations, it is a compound statement obtained by 

Intersection among variables connected with Unions. 

Examples 

• (A∨B)𝖠(A∨C)𝖠(B∨C∨D)(A∨B)𝖠(A∨C)𝖠(B∨C∨D) 

• (P𝖴Q)∩(Q𝖴R)(P𝖴Q)∩(Q𝖴R) 



Disjunctive Normal Form 

 

A compound statement is in disjunctive normal form if it is obtained by operating 

OR among variables (negation of variables included) connected with ANDs. In 

terms of set operations, it is a compound statement obtained by Union among 

variables connected with Intersections. 

Examples 

• (A𝖠B)∨(A𝖠C)∨(B𝖠C𝖠D)(A𝖠B)∨(A𝖠C)∨(B𝖠C𝖠D) 

• (P∩Q)𝖴(Q∩R) 

 

 

Resolution: 

 

The Resolution rule state that if P∨Q and ¬ P𝖠R is true, then Q∨R will also be 

true. It can be represented as 

 

 

Proof by Truth-Table: 

 

 

 

 

 

 

 

 

 

 

Resolution in FOL 

Resolution 

Resolution is a theorem proving technique that proceeds by building refutation 

proofs, i.e., proofs by contradictions. It was invented by a Mathematician John 

Alan Robinson in the year 1965. 



Resolution is used, if there are various statements are given, and we need to 

prove a conclusion of those statements. Unification is a key concept in proofs 

by resolutions. Resolution is a single inference rule which can efficiently 

operate on the conjunctive normal form or clausal form. 

Clause: Disjunction of literals (an atomic sentence) is called a clause. It is also 

known as a unit clause. 

Conjunctive Normal Form: A sentence represented as a conjunction of clauses 

is said to be conjunctive normal form or CNF. 

Example: 

 

We can resolve two clauses which are given below: 

[Animal (g(x) V Loves (f(x), x)] and [￢ Loves(a, b) V ￢Kills(a, b)] 

Where two complimentary literals are: Loves (f(x), x) and ￢ Loves (a, b) 

These literals can be unified with unifier θ= [a/f(x), and b/x] , and it will 

generate a resolvent clause: 

[Animal (g(x) V ￢ Kills(f(x), x)]. 

Steps for Resolution: 

1. Conversion of facts into first-order logic. 

2. Convert FOL statements into CNF 

3. Negate the statement which needs to prove (proof by contradiction) 

4. Draw resolution graph (unification). 

 

To better understand all the above steps, we will take an example in which we 

will apply resolution. 

Example: 

 

a. John likes all kind of food. 

b. Apple and vegetable are food 

c. Anything anyone eats and not killed is food. 



d. Anil eats peanuts and still alive 

e. Harry eats everything that Anil eats. 

Prove by resolution that: 

f. John likes peanuts. 

 

Step-1: Conversion of Facts into FOL 

In the first step we will convert all the given statements into its first order logic. 

 

 

Step-2: Conversion of FOL into CNF 

In First order logic resolution, it is required to convert the FOL into CNF as 

CNF form makes easier for resolution proofs. 

o Eliminate all implication (→) and rewrite 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 

3. ∀x ∀y ¬ [eats(x, y) Λ ¬ killed(x)] V food(y) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

6. ∀x¬ [¬ killed(x) ] V alive(x) 

7. ∀x ¬ alive(x) V ¬ killed(x) 

8. likes(John, Peanuts). 

o Move negation (¬)inwards and rewrite 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 



3. ∀x ∀y ¬ eats(x, y) V killed(x) V food(y) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

6. ∀x ¬killed(x) ] V alive(x) 

7. ∀x ¬ alive(x) V ¬ killed(x) 

8. likes(John, Peanuts). 

o Rename variables or standardize variables 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 

3. ∀y ∀z ¬ eats(y, z) V killed(y) V food(z) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀w¬ eats(Anil, w) V eats(Harry, w) 

6. ∀g ¬killed(g) ] V alive(g) 

7. ∀k ¬ alive(k) V ¬ killed(k) 

8. likes(John, Peanuts). 

o Eliminate existential instantiation quantifier by elimination. 

In this step, we will eliminate existential quantifier ∃, and this process is 

known as Skolemization. But in this example problem since there is no 

existential quantifier so all the statements will remain same in this step. 

o Drop Universal quantifiers. 

In this step we will drop all universal quantifier since all the statements 

are not implicitly quantified so we don't need it. 

1. ¬ food(x) V likes(John, x) 

2. food(Apple) 

3. food(vegetables) 

4. ¬ eats(y, z) V killed(y) V food(z) 

5. eats (Anil, Peanuts) 

6. alive(Anil) 

7. ¬ eats(Anil, w) V eats(Harry, w) 

8. killed(g) V alive(g) 

9. ¬ alive(k) V ¬ killed(k) 

10. likes(John, Peanuts). 



o Distribute conjunction 𝖠 over disjunction ¬. 

This step will not make any change in this problem. 

 

Step-3: Negate the statement to be proved 

In this statement, we will apply negation to the conclusion statements, which 

will be written as ¬likes(John, Peanuts) 

Step-4: Draw Resolution graph: 

Now in this step, we will solve the problem by resolution tree using 

substitution. For the above problem, it will be given as follows: 
 

 

 

Hence the negation of the conclusion has been proved as a complete 

contradiction with the given set of statements. 

Explanation of Resolution graph: 

o In the first step of resolution graph, ¬likes(John, Peanuts) , 

and likes(John, x) get resolved(canceled) by substitution of {Peanuts/x}, 

and we are left with ¬ food(Peanuts) 



o In the second step of the resolution graph, ¬ food(Peanuts) , 

and food(z) get resolved (canceled) by substitution of { Peanuts/z}, and 

we are left with ¬ eats(y, Peanuts) V killed(y) . 

o In the third step of the resolution graph, ¬ eats(y, Peanuts) and eats 

(Anil, Peanuts) get resolved by substitution {Anil/y}, and we are left 

with Killed(Anil) . 

o In the fourth step of the resolution graph, Killed(Anil) and ¬ killed(k) get 

resolve by substitution {Anil/k}, and we are left with ¬ alive(Anil) . 

o In the last step of the resolution graph ¬ alive(Anil) and alive(Anil) get 

resolved. 

Validity and satisfiability: 

 

In mathematical logic, including, in particular, first-order logic and propositional 

calculus, satisfiability and validity are elementary concepts of semantics. A 

formula is satisfiable if there exists an interpretation (model) that makes the 

formula true.[1] A formula is valid if all interpretations make the formula true. The 

opposites of these concepts are unsatisfiability and invalidity, that is, a formula 

is unsatisfiable if none of the interpretations make the formula true, and invalid if 

some such interpretation makes the formula false. These four concepts are related 

to each other in a manner exactly analogous to Aristotle's square of opposition. 

The four concepts can be raised to apply to whole theories: a theory is satisfiable 

(valid) if one (all) of the interpretations make(s) each of the axioms of the theory 

true, and a theory is unsatisfiable (invalid) if all (one) of the interpretations 

make(s) one of the axioms of the theory false. 

A propositional logic formula φ is called satisfiable if there is some assignment 

to its variables that makes it evaluate to true. ● p 𝖠 q is satisfiable. ● p 𝖠 ¬p is 

unsatisfiable. ● p → (q 𝖠 ¬q) is satisfiable. ● An assignment of true and false to 

the variables of φ that makes it evaluate to true is called a satisfying assignment. 

 

 

Predicate Logic deals with predicates, which are propositions containing 

variables. 

Predicate Logic – Definition 

A predicate is an expression of one or more variables defined on some specific 

domain. A predicate with variables can be made a proposition by either 

assigning a value to the variable or by quantifying the variable. 

The following are some examples of predicates − 

https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Validity_(logic)
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Formula_(mathematical_logic)
https://en.wikipedia.org/wiki/Interpretation_(logic)
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Satisfiability#cite_note-1
https://en.wikipedia.org/wiki/Aristotle
https://en.wikipedia.org/wiki/Square_of_opposition
https://en.wikipedia.org/wiki/Theory_(mathematical_logic)
https://en.wikipedia.org/wiki/Axiom


• Let E(x, y) denote "x = y" 

• Let X(a, b, c) denote "a + b + c = 0" 

• Let M(x, y) denote "x is married to y" 

Well Formed Formula 

Well Formed Formula (wff) is a predicate holding any of the following − 

• All propositional constants and propositional variables are wffs 

• If x is a variable and Y is a wff, ∀xY∀xY and ∃xY∃xY are also wff 

• Truth value and false values are wffs 

• Each atomic formula is a wff 

• All connectives connecting wffs are wffs 

Quantifiers 

The variable of predicates is quantified by quantifiers. There are two types of 

quantifier in predicate logic − Universal Quantifier and Existential Quantifier. 

Universal Quantifier 

Universal quantifier states that the statements within its scope are true for every 

value of the specific variable. It is denoted by the symbol ∀∀. 

∀xP(x)∀xP(x) is read as for every value of x, P(x) is true. 

Example − "Man is mortal" can be transformed into the propositional 

form ∀xP(x)∀xP(x) where P(x) is the predicate which denotes x is mortal and 

the universe of discourse is all men. 

Existential Quantifier 

Existential quantifier states that the statements within its scope are true for 

some values of the specific variable. It is denoted by the symbol ∃∃. 

∃xP(x)∃xP(x) is read as for some values of x, P(x) is true. 

Example − "Some people are dishonest" can be transformed into the 

propositional form ∃xP(x)∃xP(x) where P(x) is the predicate which denotes x 

is dishonest and the universe of discourse is some people. 

Nested Quantifiers 



If we use a quantifier that appears within the scope of another quantifier, it is 

called nested quantifier. 

Example 

• ∀ a∃bP(x,y)∀ a∃bP(x,y) where P(a,b)P(a,b) denotes a+b=0a+b=0 

• ∀ a∀b∀cP(a,b,c)∀ a∀b∀cP(a,b,c) where P(a,b)P(a,b) denotes a+(b+c)=(a 

+b)+c 

Syntax Of Predicate Logic: 

Predicate logic is very expressive, but we need to clarify several important 

items. 

First give a precise definition of what a formula in predicate logic is. Same as 

with programming languages: we have to pin down the syntax exactly. 

Then associate a clear definition of truth (usually called validity) with these 

formulae. Somewhat like the semantics of a programming language. 

To define validity, we have to define structures, domains over which a formula 

in predicate logic can be interpreted. 

Every function symbol and relation symbol has a fixed number of arguments, its 

arity. Terms are defined inductively by Every constant and variable is a term. If 

f is an n-ary function symbol, and t1;::: ; t n are terms, then f (t1;::: ; t n) is also 

a term. An atomic formula is an expression of the form R(t1;::: ; t n) where R is 

an n-ary relation symbol, and t1;::: ; t n are terms. Lastly, formulae are defined 

inductively by Every atomic formula is a is a formula. 


