[25104]

SPECIAL DRIVE - DEC - 2022 M.C.A. DEGREE EXAMINATIONS SECOND SEMESTER Paper - IV : FORMAL LANGUAGES AND AUTOMATA THEORY (2016-17 and 2017-18 Admitted Batches)

Time : 3 Hours

Maximum Marks: 75

 $(4 \times 15 = 60)$

SECTION-A

Answer ALL questions.

- 1. a) Prove that "L be the language accepted by NFA then there exists that accepts DFA".
 - b) Give the NFA's, which accepting the following languages over the alphabets {0,1}
 - i. Set of all strings with three consecutive 0's.
 - ii. Set of all strings such that 5th symbol from right end is 1.

(OR)

c) Find the regular expression for the following FSM:

- d) State and prove Pumping Lemma for the regular language.
- **2.** a) Eliminate ε productions from the following CFG

$$S \rightarrow ABcC, A \rightarrow BC, B \rightarrow b | \varepsilon, C \rightarrow D | \varepsilon, D \rightarrow d$$

b) Design a PDA for accepting a language $\{0^n 1^m 0^n | m, n \ge 1\}$.

(OR)

- c) Consider the grammar $S \rightarrow (L) | a, L \rightarrow L, S | S$. Derive expression ((a, a), (a, a)) by leftmost derivation and rightmost derivation.
- d) Describe the closure properties of CFL.

[25104]

[**P.T.O.**

[25104]

3. a) What is mathematical description of Turing Machine? Design Turing machine for the language $L = \{a^n b^n c^n | n \ge 1\}$.

(**OR**)

- b) Show that the Post Correspondence problem with the two lists $x = (b, bab^3, ba)$ and $y = (b^3, ba, a)$ has solution.
- c) Show that "Post Correspondence Problem is un-decidable".
- 4. a) Show that $\mathbb{R} \to \mathbb{S}$ can be derived from the premises $P \to (Q \to S)$, $R \lor P$ and Q.
 - b) Describe the syntax of predicate calculus.

(OR)

- c) Illustrate Unification theorem in predicate logic.
- d) Prove that the conditional statement $[(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$ is Tautology using logical equivalencies.

SECTION - B

Answer any FIVE questions.

- 5. a) Give the grammar for the language: $L = \{an + 1 bn | n \ge 0\}$.
 - b) Define Linear Bounded Automata.
 - c) Differentiate Moore and Mealy machine.
 - d) Define homomorphism and inverse homomorphism.
 - e) Give the regular expression for language $L = \{am bn | m \ge 2, n \le 3\}$.
 - f) Write about Parsing.
 - g) What is Universal Turing Machine?
 - h) What is NP completeness? Give an example.

[25104]

(5×3=15)