
MCA Page 1

MCA-20203 DATABASE MANAGEMENT SYSTEMS

Instruction: 4Periods/week

Internal: 25Marks

Time: 3 Hours

External:75Marks

Credits:4

Total: 100Marks
 UNIT I

Database and Database Users: Data models, schemas, and instances, three-

schemas architecture and data independence, database languages and interfaces, the

database system environment, Centralized and client/server architectures for

DBMSs, Classification of database management system.

Data Modeling Using the Entity-Relationship Model: Using High—Level

Conceptual data model, Entity types, entity sets Attributes and keys, Relationships

types, relationship sets, roles and structural constraints, Weak Entity types, ER

diagrams Meaning conventions and design issues, Enhance Entity Relationship

model,

Relational data model and relational database constraints: Relational model

constraints and relational schemas, update operations.

UNIT II

Relational Algebra and Relational Calculus: Unary Relational operations,

Relational Algebra operations, Binary Relational operation, Additional Relational

operation, Examples of Queries in Relational Algebra, Domain Relational Calculus.

Relational database design by ER and EER Relational Mapping: Relational

database design using ER to Relational Mapping, Mapping EER Model Construct

to Relations, Schema Definition, Basic Constraints and Queries: SQL Data

definition, Specifying basic constraints in SQL, Schema change Statements in SQL,

Basic queries in SQL, More complex SQL queries, INSERT DELETE UPDATE

queries in SQL, Views in SQL, Data base stored Procedures.

MCA Page 2

UNIT III

Relational Database Design: Informal design Guide lines for Relation Schema,

Functional Dependences, Normal forms based on Primary keys, General definitions

of Second and Third Normal form, BOYCE-CODE Normalform, Algorithm for

Relational database schemadesign, Multi-valued dependencies and fourth Normal

forms,

File Organization and Indexes: Introduction, Secondary Storage Devices,

Buffering Blocks, placing file records on disk, Operations on Files, Hashing

Techniques, Parallelizing Disk Access using RAID Technology, Indexing

Structures for files.

UNIT IV

Algorithm for query processing and Optimization: Translating SQL Queries into

Relational Algebra, Algorithms for SELECT and JOIN Operations, Algorithms for

PROJECT and SET Operations,

Introduction to Transaction Processing Concepts and Theory: Introduction to

Transaction Process, Transaction and System Concepts, Characterizing Schedules,

Concurrency Control Techniques, Database Recovery Concepts, Recovery

Techniques.

Text Book:

1. Fundamentals of Database System, Elmasri, Navathe, Pearson Education.

References Books:

1. Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke,

McGraw- Hill.

2. Database Concepts, Abraham Silberschatz, Henry F Korth, S Sudarshan,

McGraw-Hill

MCA Page 3

DATABASE MANAGEMENT SYSTEMS

UNIT - I

Database and Database Users

Introduction

Databases and database technology having a major impact on the growing

use of computers. It is fair to say that databases play a critical role in almost all

areas where computers are used, including business, electronic commerce, social

media, engineering, medicine, genetics, law, education, and library science.

Definition: A ‘database’ is a collection of related data. (‘data’ as both singular and

plural in database literature. In standard English, ‘data’ is used only for plural,

‘datum’ is used for singular).

By ‘data’, we mean known facts that can be recorded and that have implicit

meaning. For example, consider the names, telephone numbers, and addresses of

the people you know. Nowadays, this data is typically stored in mobile phones,

which have their own simple database software. This data can also be recorded in

an indexed address book or stored on a hard drive, using a personal computer and

software such as Microsoft Access or Excel. This collection of related data with an

implicit meaning is a database.

The common use of the term database is usually more restricted. A database

has the following implicit properties:

1. A database represents some aspect of the real world, sometimes called the

miniworld or the universe of discourse (UoD). Changes to the miniworld

are reflected in the database.

2. A database is a logically coherent collection of data with some inherent

meaning. A random assortment of data cannot correctly be referred to as a

database.

3. A database is designed, built, and populated with data for a specific purpose.

It has an intended group of users and some preconceived applications in

which these users are interested.

MCA Page 4

Definition: A database management system (DBMS) is a computerized system

that enables users to create and maintain a database. The DBMS is a general-

purpose software system that facilitates the processes of defining, constructing,

manipulating, and sharing databases among various users and applications.

Defining: a database involves specifying the data types, structures, and constraints

of the data to be stored in the database. The database definition or descriptive

information is also stored by the DBMS in the form of a database catalog or

dictionary; it is called meta-data.

Constructing: the database is the process of storing the data on some storage

medium that is controlled by the DBMS.

Manipulating: a database includes functions such as querying the database to

retrieve specific data, updating the database to reflect changes in the miniworld,

and generating reports from the data.

Sharing: a database allows multiple users and programs to access the database

simultaneously.

Other important functions provided by the DBMS include protecting the

database and maintaining it over a long period of time.

Protection: includes system protection against hardware or software malfunction

(or crashes) and security protection against unauthorized or malicious access.

Maintain: A typical large database may have a life cycle of many years, so the

DBMS must be able to maintain the database system by allowing the system to

evolve as requirements change over time.

MCA Page 5

To complete our initial definitions, we will call the database and DBMS

software together a database system.

An Example

Let us consider a simple example that most readers may be familiar with: a

UNIVERSITY database for maintaining information concerning students, courses,

and grades in a university environment. The database is organized as five files,

each of which stores data records of the same type.

The STUDENT file stores data on each student,

the COURSE file stores data on each course,
the SECTION file stores data on each section of a course,

the GRADE_REPORT file stores the grades that students receive in the various

sections they have completed, and
the PREREQUISITE file stores the prerequisites of each course.

MCA Page 6

To define this database, we must specify the structure of the records of each file

by specifying the different types of ‘data elements’ to be stored in each record.

MCA Page 7

Characteristics of the Database Approach

File processing: each user defines and implements the files needed for aspecific

software application as part of programming the application.

The main characteristics of the database approach versus the file processing

approach are the following:

1. Self-describing nature of a database system

2. Insulation between programs and data, and data abstraction

3. Support of multiple views of the data

4. Sharing of data and multiuser transaction processing

1. Self-Describing Nature of a Database System:

A fundamental characteristic of the database approach is that the database

system contains not only the database itself but also a complete definition or

description ofthe database structure and constraints. This definition is stored in the

DBMS cata- log, which contains information such as the structure of each file, the

type and stor- age format of each data item, and various constraints on the data. The

information stored in the catalog is called meta-data, and it describes the structure

of the pri- mary database.

2. Insulation between Programs and Data,and Data Abstraction:

In traditional file processing, the structure of data files is embedded in the

application programs, so any changes to the structure of a file may require

‘changing all programs’ that access that file. By contrast, DBMS access programs

do not require such changes in most cases. The structure of data files is stored in the

DBMS catalog separately from the access programs. We call this property

‘program-data independence’.

For example, a file access program may be written in such a way that it can access

only STUDENT records of the structure shown in Figure:

Data Item Name Starting Position in Record Length in Characters (bytes)

Name 1 30

Student_number 31 4

Class 35 1

Major 36 4

Fig: Internal Storage format for a Student record.

MCA Page 8

If we want to add another piece of data to each STUDENT record, say the

Birth_date, such a program will no longer work and must be changed. By contrast,

in a DBMS environment, we only need to change the description of STUDENT

records in the catalog (Figure) to reflect the inclusion of the new data item

Birth_date; no programs are changed. The next time a DBMS program refers to the

catalog, the new structure of STUDENT records will be accessed and used.

An operation (also called a function or method) is specified in two parts:

The interface (or signature) of an operation includes the operation name and the

data types of its arguments (or parameters).

The implementation (or method) ofthe operation is specified separately and can be

changed without affecting the interface.

User application programs can operate on the data by invoking these

operations through their names and arguments are called ‘program-operation

independence’.

The characteristic that allows program-data independence and program-

operation independence is called data abstraction. A DBMS provides users with a

conceptual representation of data that does not include many of the details of how

the data is stored or how the operations are implemented.

A data model is a type of data abstraction that is used to provide this

conceptual representation. The data model uses logical concepts, such as objects,

their properties, and their interrelationships,

3. Support of Multiple Views of the Data:

A database typically has many types of users, each of whom may require a

different perspective or view of the database. A view may be a subset of the

database or it may contain virtual data that is derived from the database files but is

not explicitly stored. Some users may not need to be aware of whether, the data

they refer to is stored or derived. A multiuser DBMS whose users have a variety of

distinct applications must provide facilities for defining multiple views.

4 Sharing of Data and Multiuser Transaction Processing:

A multiuser DBMS, as its name implies, must allow multiple users to access

the database at the same time. This is essential if data for multiple applications is to

be integrated and maintained in a single database. The DBMS must include

concurrency control software to ensure that several users trying to update the

same data do so in a controlled manner so that the result of the updates is correct.

MCA Page 9

For example, when several reservation agents try to assign a seat on an airline

flight, the DBMS should ensure that each seat can be accessed by only one agent at

a time for assignment to a passenger. These types of applications are generally

called online transaction processing (OLTP).

The concept of a transaction has become central to many database

applications. A transaction is an executing program or process that includes one or

more database accesses, such as reading or updating of database records. The

DBMS must enforce several transaction properties.

Actors on the Scene

In large organizations, many people are involved in the design, use, and

maintenance of a large database with hundreds or thousands of users. The people

whose jobs involve the day-to-day use of a large database; we call them the actors

on the scene.

1. Database Administrators : In a database environment, the primary resource is

the database itself, and the secondary resource is the DBMS and related software.

Administering these resources is the responsibility of the database administrator

(DBA). The DBA is responsible for authorizing access to the database,

coordinating and monitoring its use.

2. Database Designers: Database designers are responsible for identifying the

data to be stored in the database and for choosing appropriate structures to

represent and store this data.

3. End Users: End users are the people whose jobs require access to the database

for querying, updating, and generating reports.
There are several categories:

1. Casual end users: occasionally access the database, but they may need

different information each time.

2. Naive or parametric end users: make up a sizable portion of database end

users.

3. Sophisticated end users: include engineers, scientists, business analysts, and

others are the facilities of the DBMS as to implement their own applications.

4. Stand alone users: maintain personal databases by using ready-made program

packages that provide easy-to-use menu-based or graphics-based interfaces.

MCA Page 10

4. System Analysts and Application Programmers (Software Engineers):

System analysts determine the requirements of end users. Application programmers

implement these specifications as programs; then they test, debug, document, and

maintain these canned transactions.

Advantages of Using the DBMS Approach

1. Controlling Redundancy: The redundancy in storing the same data multiple

times leads to several problems. The DBMS should have the capability to control

this redundancy. So as to prohibit, inconsistencies among the files.

2. Restricting Unauthorized Access: When multiple users share a large database,

that most users will not be authorized to access all information in the database. A

DBMS should provide a security and authorization subsystem, which the DBA

uses to create accounts and to specify account restrictions.

3. Providing Persistent Storage for Program Objects: This is one of the main

reasons for object-oriented database systems. Programming languages typically

have complex data structures, such as record types in Pascal or class definitions in

C++ or Java.

4. Providing Storage Structures for Efficient Query Processing: Database

systems must provide capabilities for efficiently executing queries and updates.

The DBMS must provide specialized data structures to speed up disk search for the

desired records.

5. Providing Backup and Recovery: A DBMS must provide facilities for

recovering from hardware or software failures. The backup and recovery

subsystem of the DBMS is responsible for recovery.

6. Providing Multiple User Interfaces: Because many types of users with

varying levels of technical knowledge use a database, a DBMS should provide a

variety of user interfaces. These include apps for mobile users, query languages for

casual users, programming language interfaces for application programmers, forms

and command codes for parametric users, and menu-driven interfaces and natural

language interfaces for standalone users. Both forms-style interfaces and menu-

driven interfaces are commonly known as graphical user interfaces (GUIs).

MCA Page 11

7. Representing Complex Relationships among Data: A DBMS must have the

capability to represent a variety of complex relationships among the database as

well as to retrieve and update related data easily and efficiently.

8. Enforcing Integrity Constraints: Most database applications have certain

integrity constraints that must hold for the data. A DBMS should provide

capabilities for defining and enforcing these constraints.

9. Permitting Inferencing and Actions Using Rules: Some database systems

provide capabilities for defining deduction rules for inferencing new information

from the stored database facts. Such systems are called deductive database

systems.

10. Additional Implications of Using the Database Approach:

1. Potential for Enforcing Standards.

2. Reduced Application Development Time.

3. Flexibility

4. Availability of Up-to-Date Information.

5. Economies of Scale

A Brief History of Database Applications

1. Early Database Applications Using Hierarchical and Network Systems

2. Providing Data Abstraction and Application Flexibility with Relational

Databases
3. Object-Oriented Applications and the Need for More Complex Databases

4. Interchanging Data on the Web for E-Commerce

5. Extending Database Capabilities for New Applications

MCA Page 12

Database System Concepts and Architecture

The architecture of DBMS package has evolved from the early monolithic

systems, where the whole DBMS software package was one lightly integrated

system, to the modern DBMS packages are modular in design, with a client/server

system architecture.

Data Models, Schemas, and Instances

Data Model: A data model is a collection of concepts that can be used to

describe the structure of a database. By structure of a database we mean the data

types, relationships, and constraints that apply to the data. Most data models also

include a set of ‘basic operations’ for specifying retrievals and updates on the

database.

Categories of Data Models

We can categorize according to the types of concepts they use to describe the

database structure. ‘High-level’ or ‘conceptual data models’ provide concepts that

are close to the way many users perceive data, whereas ‘low-level’ or ‘physical

data models’ provide concepts that describe the details of how data is stored on the

computer.

Between these two extremes is a class of ‘representational (or implementation)

data models’, which provide concepts that may be easily understood by end users.

Conceptual data models use concepts such as entities, attributes, and

relationships. An ‘entity’ represents a real-world object or concept, such as an

employee or a project, that is described in the database. An ‘attribute’ represents

some property of interest that further describes an entity, such as the employee’s

name or salary. A ‘relationship’ among two or more entities represents an

association among the entities, for example, a works-on relationship between an

employee and a project.

Representational data models represent data by using record structures and

hence are sometimes called record-based data models.

‘Object data model’ as a new family of higher-level implementation data

models that are closer to conceptual data models.

MCA Page 13

Schemas, Instances, and Database State

In a data model, it is important to distinguish between the ‘description’ of the

database and the ‘database itself’. The description of a database is called the

database schema, which is specified during database design and is not expected to

change frequently.
Most data models have certain conventions for displaying schemas as diagrams.

A displayed schema is called a schema diagram.

A schema diagram displays only some aspects of a schema, such as the names

of record types and data items. Other aspects are not specified in the schema

diagram.

The data in the database at a particular moment in time is called a database

state or snapshot. It is also called the current set of occurrences or instances in

the database. In a given database state, each schema construct has its own current

set of instances. For example, the STUDENT construct will contain the set of

individual student entities (records) as its instances.

The DBMS stores the descriptions of the schema constructs and constraints also

called the meta-data.

MCA Page 14

Three-Schema Architecture and Data Independence

The Three-Schema Architecture:
The goal of the three-schema architecture, illustrated in Figure 2.2, is to

separate the user applications from the physical database.

Schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical

storage structure of the database. The internal schema uses a physical data

model and describes the complete details of data storage and access paths for

the database.

2. The conceptual level has a conceptual schema, which describes the

structure of the whole database for a community of users. The conceptual

schema hides the details of physical storage structures and concentrates on

describing entities, data types, relationships, user operations, and constraints.

MCA Page 15

3. The external or view level includes a number of external schemas or user

views. Each external schema describes the part of the database that a

particular user group is interested in and hides the rest of the database from

that user group.
The processes of transforming requests and results between levels are called

mapping.

Data Independence

Which can be defined as the capacity to change the schema at one level of a

database system without having to change the schema at the next higher level. We

can define two types of data independence:

1. Logical data independence: is the capacity to change the conceptual

schema without having to change external schemas or application programs.

Changes to constraints can be applied to the conceptual schema without

affecting the external schemas or application programs.

2. Physical data independence: is the capacity to change the internal schema

without having to change the conceptual schema. Hence, the external

schemas need not be changed as well. For example, by creating additional

access structures to improve the performance of retrieval or update.

Database Languages and Interfaces

DBMS Languages

In many DBMSs where no strict separation of levels is maintained, one

language, called the data definition language (DDL), is used by the DBA and by

database designers to define both schemas. DDL is used to specify the conceptual

schema only.

Storage definition language (SDL): is used to specify the internal schema. The

mappings between the two schemas may be specified in either one of these

languages.

View definition language (VDL): to specify user views and their mappings to the

conceptual schema, but in most DBMSs the DDL is used to define both conceptual

and external schemas.

Data manipulation language (DML): Typical manipulations include retrieval,

insertion, deletion, and modification of the data. The DBMS provides a set of

operations or a language called the data manipulation language (DML) for these

purposes.

MCA Page 16

There are two main types of DMLs.

1. High-level or nonprocedural DML can be used on its own to specify

complex database operations concisely.

2. Lowlevel or procedural DML must be embedded in a general-purpose

programming language. This type of DML typically retrieves individual

records or objects. Low-level DMLs are also called record-at-a-time DMLs.

Whether high level or low level, are embedded in a general-purpose

programming language, that language is called the host language and the DML is

called the data sublanguage.

A high-level DML used in a standalone interactive manner is called a query

language.

DBMS Interfaces

User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing: These interfaces present

the user with lists of options called menus, that lead the user through the

formulation of a request. Pull-down menus are a very popular technique in Web-

based user interfaces. They are also often used in browsing interfaces.

Apps for Mobile Devices: These interfaces present mobile users with access to

their data. For example, banking, reservations, and insurance companies, among

many others, provide apps that allow users to access their data through a mobile

phone or mobile device. The apps have built-in programmed interfaces that

typically allow users to login using their account name and password; the apps then

provide a limited menu of options for mobile access to the user data, as well as

options such as paying bills (for banks) or making reservations (for reservation

Web sites).

Forms-based Interfaces: A forms-based interface displays a ‘form’ to each user.

Users can fill out all of the form entries to insert new data. Many DBMSs have

‘forms specification languages’, which are special languages that help

programmers specify such forms.

Graphical User Interfaces: A GUI typically displays a schema to the user in

diagrammatic form. The user then can specify a query by manipulating the diagram.

In many cases, GUIs utilize both menus and forms.

MCA Page 17

Natural Language Interfaces: These interfaces accept requests written in English

or some other language and attempt to understand them. A natural language

interface usually has its own schema, which is similar to the database conceptual

schema, as well as a dictionary of important words.

Keyword-based Database Search: These are somewhat similar to Web search

engines, which accept strings of natural language (like English or Spanish) words

and match them with documents at specific sites (for local search engines) or Web

pages on the Web at large (for engines like Google or Ask).

Speech Input and Output: Limited use of speech as an input query and speech as

an answer to a question or result of a request is becoming commonplace. The

speech input is detected using a library of predefined words and used to set up the

parameters that are supplied to the queries. For output, a similar conversion from

text or numbers into speech takes place.

Interfaces for Parametric Users: Parametric users, such as bank tellers, often

have a small set of operations that they must perform repeatedly. Systems analysts

and programmers design and implement a special interface.

Interfaces for the DBA: Most database systems contain privileged commands

that can be used only by the DBA staff. These include commands for creating

accounts, setting system parameters, granting account authorization, changing a

schema, and reorganizing the storage structures of a database.

MCA Page 18

The Database System Environment

1. DBMS Component Modules

The Figure illustrates, in a simplified form, the typical DBMS components. The

figure is divided into two parts. The top part of the figure refers to the various users of

the database environment and their interfaces. The lower part shows the internal

modules of the DBMS responsible for storage of data and processing of transactions.

MCA Page 19

The database and the DBMS catalog are usually stored on disk. Access to the

disk is controlled primarily by the operating system (OS), which schedules disk

read/write. A higher-level ‘stored data manager’ module of the DBMS controls

access to DBMS information that is stored on disk.

Let us consider the top part of Figure first. It shows interfaces for the DBA staff,

casual users who work with interactive interfaces to formulate queries, application

programmers who create programs using some host programming languages, and

parametric users who do data entry work by supplying parameters to predefined

transactions.

The DBA staff works on defining the database using the DDL and other

privileged commands. The DDL compiler processes schema definitions, specified in

the DDL, and stores descriptions of the schemas (meta-data) in the DBMS catalog.

Casual users and persons with occasional need for information from the

database interact using the interactive query interface. These queries are parsed and

validated for correctness of the query syntax, the names of files and data elements,

and so on by a query compiler that compiles them into an internal form. This internal

query is subjected to query optimization. Among other things, the query optimizer is

concerned with the rearrangement and possible reordering of operations.

Application programmers write programs in host languages such as Java, C, or

C++ that are submitted to a precompiler. The precompiler extracts DML commands

from an application program written in a host programming language. These

commands are sent to the DML compiler for compilation into object code for

database access.

In the lower part of Figure, the runtime database processor handles database

accesses at run time, it receives retrieves or update operations and carries them out on

the database. It works with the system catalog and may update it with statistics. It

also works with the stored data manager, which in turn uses basic operating system

services for carrying out low-level input/output (read/write) operations between the

disk and main memory.

We have shown concurrency control and backup and recovery systems

separately as a module in this figure. They are integrated into the working of the

runtime database processor for purposes of transaction management.

MCA Page 20

The client program accesses the DBMS running on a separate computer or

device from the computer on which the database resides. The former is called the

client computer, and the latter is called the database server. In many cases, the

client accesses a middle computer, called the application server, which in turn

accesses the database server.

2. Database System Utilities

Most DBMSs have database utilities that help the DBA manage the

database system. Common utilities have the following types of functions:

Loading: A loading utility is used to load existing data files such as text files or

sequential files into the database.

Backup: A backup utility creates a backup copy of the database, usually by dumping

the entire database onto tape. Incremental backups are also often used.

File reorganization: This utility can be used to reorganize a set of database files into

different file organization to improve performance.

Performance monitoring: Such a utility monitors database usage and provides

statistics to the DBA. The DBA uses the statistics in making decisions such as

whether or not to reorganize files or whether to add or drop indexes to improve

performance.

3. Tools, Application Environments, and Communications Facilities:

Other tools are often available to database designers, users, and the DBMS.

CASE tools are used in the design phase of database systems. Another tool that can

be quite useful in large organizations is an expanded data dictionary (or data

repository) system. The data dictionary stores other information, such as design

decisions, usage standards, application program descriptions, and user information.

Such a system is also called an information repository.

Application development environments, such as PowerBuilder (Sybase) or

JBuilder (Borland), have been quite popular. These systems provide an environment

for developing database applications.

The DBMS also needs to interface with communications software, whose

function is to allow users at locations remote from the database system site to access

the database through computer terminals, workstations, or personal computers.

The integrated DBMS and data communications system is called a DB/DC system.

Communications networks are needed to connect the machines. These are often local

area networks (LANs).

MCA Page 21

Centralized and Client/Server Architectures for DBMSs

1. Centralized DBMSs Architecture:

Architectures for DBMSs have followed trends similar to those for general

computer system architectures. Older architectures used mainframe computers to

provide the main processing for all system.

All processing was performed remotely on the computer system, and only display

information and controls were sent from the computer to the display terminals, which

were connected to the central computer via various types of communications

networks.

As prices of hardware declined, most users replaced their terminals with PCs and

workstations. At first, database systems used these computers in the same way as they

had used display terminals, so that the DBMS itself was still a centralized DBMS in

which all the DBMS functionality application program execution, and user interface

processing were carried out on one machine.

Figure: A Physical Centralized architecture

MCA Page 22

2. Basic Client/Server Architectures

The client/server architecture was developed to deal with computing

environments in which a large number of PCs, workstations, file servers, printers,

database servers, Web servers, e-mail servers, and other software and equipment are

connected via a network.

Figure: Logical two tier client/server architecture

A file server that maintains the files of the client machines. A printer server

connected to various printers; thereafter, all print requests by the clients are forwarded

to this machine. Web servers or e-mail servers are fall into the specialized server

category. Specialized servers can be accessed by many client machines.

The client machines provide the user with the appropriate interfaces to utilize

these servers.

A client in this framework is typically a user machine that provides user interface

capabilities and local processing.

MCA Page 23

3. Two-Tier Client/Server Architectures for DBMSs

Figure: Physical Two- Tier Client/Server Architecture for DBMSs

The Client/Server architecture is increasingly being incorporated into commercial

DBMS packages. In relational database management systems (RDBMSs), many of

which started as centralized systems. Because SQL provided a standard language for

RDBMSs, this created a logical dividing point between client and server. Hence, the

query and transaction functionality remained on the server side. In such an

architecture, the server is often called a query server or transaction server because

it provides these two functionalities. In an RDBMS, the server is also often called an

SQL server.

When DBMS access is required, the program establishes a connection to the

DBMS, once the connection is created, the client program can communicate with the

DBMS. A standard called Open Database Connectivity (ODBC) provides an

application programming interface (API), which allows client-side programs.

The architectures described here are called two-tier architectures because the

software components are distributed over two systems: client and server. The

emergence of the Web changed the roles of clients and servers, leading to the three-

tier architecture.

MCA Page 24

4. Three-Tier and n-Tier Architectures for Web Applications

Figure: Logical Three-tier Client/Server architecture

Many Web applications use an architecture called the three-tier architecture,

which adds an intermediate layer between the client and the database server, as

illustrated in Figure.

This intermediate layer or middle tier is called the application server or the

Web server, depending on the application. This server plays an intermediary role by

running application programs and storing business rules that are used to access data

from the database server.

Clients contain GUI interfaces and Web browsers. The intermediate server

accepts requests from the client, processes the request and sends database queries and

commands to the database server, and then acts as a conduit for passing (partially)

processed data from the database server to the clients, where it may be processed

further and filtered to be presented to the users. Thus, the user interface, application

rules, and data access act as the three tiers.

MCA Page 25

Classification of Database Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on

which the DBMS is based. The main data model used in many current commercial

DBMSs is the relational data model.

The object data model was implemented in some commercial systems but has

not had widespread use.

Many legacy (older) applications still run on database systems based on the

hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been

incorporating many of the concepts that were developed in object databases. This has

a new class of DBMSs called object-relational DBMSs.

The second criterion used to classify DBMSs is the number of users supported

by the system. Single-user systems support only one user at a time and are mostly

used with Personal Computers. Multiuser systems, which include the majority of

DBMSs, support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed.

A DBMS is centralized if the data is stored at a single computer site. A centralized

DBMS can support multiple users. A distributed DBMS (DDBMS) can have the

actual database and DBMS software distributed over many sites connected by a

computer network. Homogeneous DDBMSs use the same DBMS software at all the

sites.

The fourth criterion is cost of the DBMS. The majority of DBMS packages cost

between $10,000 and $100,000. Single-user low-end systems that work with

microcomputers cost between $100 and $3000. A few elaborate packages cost more

than $100,1000.

We can also classify a DBMS on the basis of the types of access path options

for storing files. One well-known family of DBMSs is based on inverted file

structures.
Finally, a DBMS can be general purpose or special purpose.

MCA Page 26

Data Modeling Using the Entity– Relationship (ER) Model

The modeling concepts of the entity–relationship (ER) model, which is a

popular high-level conceptual data model.

Object modeling methodologies such as the Unified Modeling Language (UML)

are becoming increasingly popular in both database and software design.

Using High-Level Conceptual Data Models for Database Design

The main phases of database design:

MCA Page 27

Figure shows a simplified description of the database design process. The first

step shown is requirements collection and analysis. During this step, the database

designers interview prospective database users to understand and document their data

requirements. The result of this step is a concisely written set of users’ requirements.

In parallel with specifying the data requirements, it is useful to specify the

known functional requirements of the application. These consist of the user

defined operations (or transactions) that will be applied to the database, including

both retrievals and updates.

Once all the requirements have been collected and analyzed, the next step is to

create a conceptual schema for the database, using a high-level conceptual data

model. This step is called conceptual design. The conceptual schema is a concise

description of the data requirements of the users and includes detailed descriptions of

the entity types, relationships, and constraints; these are expressed using the concepts

provided by the high-level data model.

The next step in database design is the actual implementation of the database,

using a commercial DBMS. Most current commercial DBMSs use an implementation

data model—such as the relational (SQL) model—so the conceptual schema is

transformed from the high-level data model into the implementation data model. This

step is called logical design or data model mapping, and its result is a database

schema in the implementation data model of the DBMS.

The last step is the physical design phase, during which the internal storage

structures, file organizations, indexes, access paths for the database files are specified.

In parallel, application programs are designed and implemented as database

transactions corresponding to the high-level transaction specifications.

MCA Page 28

Entity Types, Entity Sets, Attributes, and Keys

The ER model describes data as entities, relationships, and attributes.

1. Entities and Attributes:

Entities and Their Attributes. The basic concept that the ER model represents is an

entity, which is a thing or object in the real world with an independent existence. An

entity may be an object with a physical existence (for example, a particular person,

car, house, or employee) or it may be an object with a conceptual existence (for

instance, a company, a job, or a university course).

Each entity has attributes—the particular properties that describe it. For example,

an EMPLOYEE entity may be described by the employee’s name, age, address,

salary, and job.

Figure: Two entities, e1 and company c1, and their attributes

The EMPLOYEE entity e1 has four attributes: Name, Address, Age, and

Home_phone; their values are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’,

‘55’, and ‘713-749-2630’, respectively.

The COMPANY entity c1 has three attributes: Name, Headquarters, and President;

their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

Several types of attributes occur in the ER model: simple versus composite,

single- valued versus multivalued, and stored versus derived.

MCA Page 29

Composite versus Simple (Atomic) Attributes: Composite attributes can be divided

into smaller subparts, which represent more basic attributes with independent

meanings. For example, the Address attribute of the EMPLOYEE entity shown in

Figure can be subdivided into Street_address, City, State, and Zip, with the values

‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’.

Attributes that are not divisible are called simple or atomic attributes.

Fig: A hierarchy of composite attributes

Single-Valued versus Multivalued Attributes: Most attributes have a single value

for a particular entity, such attributes are called single-valued. For example, Age is a

single-valued attribute of a person. In some cases an attribute can have a set of values

for the same entity. For eg, a College_degrees attribute for a person, one person may

not have any college degrees, another person may have one, and a third person may

have two or more degrees. Such attributes are called multivalued.

Stored versus Derived Attributes: In some cases, two (or more) attribute values are

related, for example, the Age and Birth_date attributes of a person. For a particular

person entity, the value of Age can be determined from the current (today’s) date and

the value of that person’s Birth_date. The Age attribute is hence called a derived

attribute and is said to be derivable from the Birth_date attribute, which is called a

stored attribute.

NULL Values: In some cases, a particular entity may not have an applicable value

for an attribute. For example, the Apartment_number attribute of an address applies

only to addresses that are in apartment buildings and not to other types of residences,

such as single-family homes. For such situations, a special value called NULL is

created.

MCA Page 30

Complex Attributes: Notice that, in general, composite and multivalued attributes

can be nested arbitrarily. We can represent arbitrary nesting by grouping components

of a composite attribute between parentheses () and separating the components with

commas, and by displaying multivalued attributes between braces { }. Such attributes

are called complex attributes.

Eg: {Address_phone({Phone(Area_code,Phone_number)},Address(Street_address

(Number,Street,Apartment_number),City,State,Zip))}

2. Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets: A database usually contains groups of entities

that are similar An entity type defines a collection (or set) of entities that have the

same attributes. Each entity type in the database is described by its name and

attributes. Figure shows two entity types: EMPLOYEE and COMPANY, and a list

of attributes for each.

The collection of all entities of a particular entity type in the database at any

point in time is called an entity set; the entity set is usually referred to using the

same name as the entity type. For example, EMPLOYEE refers to both a type of

entity as well as the current ‘set of all employee entities’ in the database.

Eg:

:

MCA Page 31

An entity type is represented in ER diagrams as a rectangular box enclosing

the entity type name. Attribute names are enclosed in ovals and are attached to

their entity type by straight lines. Composite attributes are attached to their

component attributes by straight lines. Multivalued attributes are displayed in

double ovals.

Key Attributes of an Entity Type: An important constraint on the entities of an

entity type is the key or uniqueness constraint on attributes. An entity type usually

has one or more attributes whose values are distinct for each individual entity in

the entity set. Such an attribute is called a key attribute, and its values can be used

to identify each entity uniquely.

Value Sets (Domains) of Attributes: A value set, which specifies the set of

values that may be assigned to that attribute for each individual entity. In the

above Figure, if the range of ages allowed for employees is between 16 and 70, we

can specify the value set of the Age attribute of EMPLOYEE to be the set of

integer numbers between 16 and 70. Similarly, we can specify the value set for the

Name attribute to be the set of strings of alphabetic characters separated by blank

characters, and so on. Value sets are typically specified using the basic ‘data

types’.

Eg: ER diagram for the CAR entity type with two key attributes, Registration and

Vehicle_id.

MCA Page 32

3. Initial Conceptual Design of the COMPANY Database

We can define the entity types for the COMPANY database. We can identify

four entity types—one corresponding to each of the four items in the specification:

1. An entity type DEPARTMENT with attributes Name, Number, Locations,

Manager, and Manager_start_date. Locations is the only multivalued attribute.

2. An entity type PROJECT with attributes Name, Number, Location, and

Controlling_department. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,

Birth_date, Department, and Supervisor. Both Name and Address may be

composite attributes; the individual components of Name—First_name,

Middle_initial, Last_name—or of Address.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,

Birth_date, and Relationship (to the employee).

Figure: Preliminary design of entity types for the COMPANY database. Some of

the shown attributes will be refined into relationships.

MCA Page 33

MCA Page 34

Figure A: An ER Schema diagram for the COMPANY database.

MCA Page 35

Relationship Types, Relationship Sets, Roles and Structural

Constraints

In fact, whenever an attribute of one entity type refers to another entity type,

some relationship exists.

1. Relationship Types, Sets, and Instances:

A relationship type R among n entity types E1, E2, . . . , En defines a set of

associations or a relationship set among entities from these entity types. As for the

case of entity types and entity sets, a relationship type and its corresponding

relationship set are customarily referred to by the same name, R. Mathematically,

the relationship set R is a set of relationship instances ri, where each ri associates n

individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set

Ej , 1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . ,

En; alternatively, it can be defined as a subset of the Cartesian product of the entity

sets E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to

‘participate’ in the relationship type R.

Example: Some instances in the WORKS_FOR relationship set, which represents

a relationship type WORKS_FOR between EMPLOYEE and DEPARTMENT

MCA Page 36

A relationship type WORKS_FOR between the two entity types EMPLOYEE

and DEPARTMENT, which associates each employee with the department for

which the employee works. Each relationship instance in the relationship set

WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT entity.

In ER diagrams, relationship types are displayed as diamond-shaped boxes,

which are connected by straight lines to the rectangular boxes representing the

participating entity types. The relationship name is displayed in the diamond-shape

box.

2. Relationship Degree, Role Names, and Recursive Relationships

Degree of a Relationship Type: The degree of a relationship type is the number

of participating entity types. Hence, the WORKS_FOR relationship is of degree

two. A relationship type of degree two is called binary, and one of degree three is

called ternary.

An example of a ternary relationship is SUPPLY, shown in Figure, where each

relationship instance ri associates three entities, a supplier s, a part p, and a project

j whenever s supplies part p to project j.

Figure: Some relationship instances in the SUPPLY ternary relationship set.

MCA Page 37

Relationships as Attributes:

It is sometimes convenient to think of a binary relationship type in terms of

attributes. Consider the WORKS_FOR relationship type. One can think of an

attribute called Department of the EMPLOYEE entity type, where the value of

Department for each EMPLOYEE entity is (a reference to) the DEPARTMENT

entity for which that employee works. Hence, the value set for this Department

attribute is the set of all DEPARTMENT entities, which is the DEPARTMENT

entity set.

Role Names and Recursive Relationships:

Each entity type that participates in a relationship type plays a particular role

in the relationship. The role name signifies the role that a participating entity from

the entity type plays in each relationship instance. For example, in the

WORKS_FOR relationship type, EMPLOYEE plays the role of employee or

worker and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the

participating entity types are distinct. In some cases, the same entity type

participates more than once in a relationship type in different roles. Such

relationship types are called recursive relationships.

Example: The SUPERVISION relationship type relates an employee to a

supervisor, where both employee and supervisor entities are members of the same

EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in

SUPERVISION: once in the role of supervisor (or boss), and once in the role of

supervisee (or subordinate). In Figure 3.11, the lines marked ‘1’ represent the

supervisor role, and those marked ‘2’ represent the supervisee role; hence, e1

supervises e2 and e3, e4 supervises e6 and e7, and e5 supervises e1 and e4.

MCA Page 38

Figure: A recursive relationship SUPERVISION between EMPLOYEE in the

supervisor role (1) and EMPLOYEE in the subordinate role (2)

3. Constraints on Binary Relationship Types

Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set.

These constraints are determined from the miniworld situation that the

relationships represent. In the WORKS_FOR example, if the company has a rule

that each employee must work for exactly one department, then we would like to

describe this constraint in the schema. We can distinguish two main types of binary

relationship constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships: The cardinality ratio for a binary

relationship specifies the maximum number of relationship instances that an entity

can participate in. For example, in the WORKS_FOR binary relationship type,

DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each

department can be related to any number of employees (N), but an employee can

be related to only one department. The possible cardinality ratios for binary

relationship types are 1:1, 1:N, N:1, and M:N

MCA Page 39

Figure: A 1:1 relationship, MANAGES.

Figure: An M:N relationship, WORKS_ON.

MCA Page 40

4. Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types.

For example, to record the number of hours per week that a particular employee

works on a particular project, we can include an attribute Hours for the

WORKS_ON relationship type in above Figure.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one

of the participating entity types.

For a 1:N relationship type, a relationship attribute can be migrated only to the

entity type on the N-side of the relationship.

For M:N (many-to-many) relationship types, some attributes may be

determined by the combination of participating entities in a relationship instance,

not by any single entity. Such attributes must be specified as relationship attributes.

Weak Entity Types

Entity types that do not have key attributes of their own are called weak

entity types. In contrast, regular entity types that do have a key attribute are

called strong entity types. Entities belonging to a weak entity type are identified

by being related to specific entities from another entity type in combination with

one of their attribute values. A weak entity type always has a total participation

constraint with respect to its identifying relationship because a weak entity cannot

be identified without an owner entity.

A weak entity type normally has a partial key, which is the attribute that can

uniquely identify weak entities that are related to the same owner entity.

In ER diagrams, both a weak entity type and its identifying relationship are

distinguished by surrounding their boxes and diamonds with double lines (see

Figure A). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite,

multivalued) attributes.

MCA Page 41

ER Diagrams, Naming Conventions, and Design Issues

1. Summary of Notation for ER Diagrams:

In ER diagrams the emphasis is on representing the schemas rather than the

instances. This is more useful in database design.

Figure ‘A’ displays the COMPANY ER database schema as an ER diagram.

Regular (strong) entity types such as EMPLOYEE, DEPARTMENT, and

PROJECT are shown in rectangular boxes. Relationship types such as

WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are shown in

diamond-shaped boxes attached to the participating entity types with straight lines.

Attributes are shown in ovals, and each attribute is attached by a straight line to its

entity type or relationship type. Component attributes of a composite attribute are

attached to the oval representing the composite attribute, as illustrated by the Name

attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as

illustrated by the Locations attribute of DEPARTMENT. Key attributes have their

names underlined. Derived attributes are shown in dotted ovals, as illustrated by

the Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and

by having their identifying relationship placed in double diamonds, as illustrated by

the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship

type.

In Figure A, the cardinality ratio of each binary relationship type is specified

by attaching a 1, M, or N on each participating edge. The cardinality ratio of

DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for

DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON.

2. Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types,

attributes, relationship types, and roles is not always straightforward. One should

choose names that convey, as much as possible, the meanings attached to the

different constructs in the schema. We choose to use singular names for entity

types, rather than plural ones. In our ER diagrams, we will use the convention that

entity type and relationship type names are in uppercase letters, attribute names

have their initial letter capitalized, and role names are in lowercase letters.

MCA Page 42

As a general practice, the nouns appearing in the narrative tend to give rise to

entity type names, and the verbs tend to indicate names of relationship types.

Another naming consideration involves choosing binary relationship names to

make the ER diagram of the schema readable from left to right and from top to

bottom.

3. Design Choices for ER Conceptual Design

In general, the schema design process should be considered an iterative

refinement process. Some of the refinements that are often used include the

following:

• A concept may be first modeled as an attribute and then refined into a

relationship.

• Similarly, an attribute that exists in several entity types may be elevated or

promoted to an independent entity type.

• An inverse refinement to the previous case may be applied.

4. Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams.

The Unified Modeling Language (UML) notation for class diagrams, which has

been proposed as a standard for conceptual object modeling.

MCA Page 43

Figure: Summary of the notation for ER diagrams

MCA Page 44

The Enhanced Entity–Relationship (EER) Model

Enhanced Entity–Relationship (EER) Model:

The databases for engineering design and manufacturing (CAD/CAM),

telecommunications, complex software systems have more complex than the

traditional applications. This led to the development of additional semantic data

modeling concepts that were incorporated into conceptual data models such as the

ER model.

The additional semantic data modeling concepts are

1. Subclasses, Superclasses, and Inheritance

2. Specialization and Generalization

3. Various types of Constraints on Specialization and Generalization

4. Modeling of UNION Types Using Categories

1. Subclasses, Superclasses, and Inheritance: An entity type has

numerous sub groupings of its entities that are meaningful and need to be

represented explicitly.

For example, the entity type EMPLOYEE may be grouped further into

SECRETARY, ENGINEER, MANAGER, TECHNICIAN,

SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on.

Each of these sub groupings, a subclass of the EMPLOYEE entity type, and the

EMPLOYEE entity type is called the superclass for each of these subclasses. The

following Figure shows how to represent these concepts diagrammatically in EER

diagrams.

MCA Page 45

The relationship between a superclass and any one of its subclasses, a

superclass/subclass or supertype/subtype or simply class/subclass relationship.

For example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN

are two class/subclass relationships.

An important concept associated with subclasses is that of type inheritance.

An entity that is a member of a subclass inherits all the attributes of the entity as a

member of the superclass. The entity also inherits all the relationships in which the

superclass participates

2. Specialization and Generalization

Specialization:
Specialization is the process of defining a set of subclasses of an entity type.

This entity type is called the superclass of the specialization.

For example, the set of subclasses {SECRETARY, ENGINEER,

TECHNICIAN} is a specialization of the superclass EMPLOYEE. The super class

EMPLOYEE identifies subclass entities based on the job type of the employee.

MCA Page 46

The following Figure shows a few entity instances that belong to subclasses of the

{SECRETARY, ENGINEER, TECHNICIAN} specialization.

Figure: Instances of a specialization.

A superclass/subclass relationship such as EMPLOYEE/SECRETARY is a

1:1 relationship two distinct entities are related. In a superclass/subclass

relationship the entity in the subclass is the same as entity in the superclass but is

playing a specialized role.

For example, an EMPLOYEE specialized in the role of SECRETARY or an

EMPLOYEE specialized in the role of TECHNICIAN.

Generalization: Generalization is a reverse process of abstraction in which we

suppress the differences among several entity types, identify their common features,

and generalize them into a single superclass of which the original entity types are

special subclasses. Generalization refers to the process of defining a generalized

entity type from the given entity types.

MCA Page 47

For example, consider the entity types CAR and TRUCK shown in Figure.

Because they have several common attributes, they can be generalized into the

entity type VEHICLE. Both CAR and TRUCK are now subclasses of the

generalized superclass VEHICLE.

3. Constraints and Characteristics of Specialization and

Generalization Hierarchies

Constraints on Specialization and Generalization: A specialization consists of

number of sub classes. In such cases we use circle notation. A specialization

consists of single subclass. In such cases we do not use the circle notation. In some

specializations we can determine exactly the entities that will become members of

each subclass by placing a condition on the value of some attribute of the

superclass. Such subclasses are called predicate-defined subclasses.

MCA Page 48

For example, if the EMPLOYEE entity type has an attribute Job_type, as

shown in Figure, we can specify the condition in the SECRETARY subclass by the

condition (Job_type = ‘Secretary’). This condition is a constraint specifying that

exactly.

Figure: EER diagram notation for an attribute-defined specialization on Job_type

If all subclasses in a specialization have their membership condition on the

same attribute of the superclass, the specialization itself is called an attribute-

defined specialization, and the attribute is called the defining attribute of the

specialization.

Two other constraints may apply to a specialization. They are he disjointness

constraint, and completeness constraint.

Disjointness constraint: An entity can be a member of at most one of the

subclasses of the specialization. This is displayed by placing a ‘d’ in the circle. An

entity may be a member of more than one sub class of specialiazation. This is

displayed by placing ‘o’ in the circle.

MCA Page 49

Completeness (or totalness) constraint: This completeness constraint may be

total or partial. A total specialization constraint specifies that every entity in the

superclass must be a member of at least one subclass in the specialization.

For example, if every EMPLOYEE must be either an HOURLY_EMPLOYEE

or a SALARIED_EMPLOYEE, then the specialization {HOURLY_EMPLOYEE,

SALARIED_EMPLOYEE} is a total specialization of EMPLOYEE.

The total specialization is represented in EER diagrams by using a double line

to connect the superclass to the circle. A single line is used to display a partial

specialization, which allows an entity not to belong to any of the subclasses.

For example, if some EMPLOYEE entities do not belong to any of the

subclasses {SECRETARY, ENGINEER, TECHNICIAN} in Figures then that

specialization is partial.

Figure: EER diagram notation for an overlapping (nondisjoint) specialization.

The disjointness and completeness constraints are independent. Hence, we

have the following four possible constraints on a specialization:
■ Disjoint, total

■ Disjoint, partial

■ Overlapping, total

■ Overlapping, partial.

MCA Page 50

Specialization and Generalization Hierarchies and Lattices:

A subclass itself may have further subclasses, forming a hierarchy or a lattice of

specializations. A specialization hierarchy has the constraint that every subclass

participates as a subclass in only one class/subclass relationship; that is, each

subclass has only one parent. A specialization lattice, a subclass can be a subclass

in more than one class/subclass relationship.

The following diagram shows hierarchical lattices.

MCA Page 51

The PERSON entity type is specialized into the subclasses {EMPLOYEE,

ALUMNUS, STUDENT}. This specialization is overlapping.

The sub class EMPLOYEE is the superclass for the specialization

{STUDENT_ASSISTANT, FACULTY, STAFF}.

The subclass STUDENT is the superclass for the specialization

{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT},

Finally, the sub class STUDENT_ASSISTANT is the superclass for the

specialization into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.

The subclass with more than one superclass is called a shared subclass, leads to

lattices, if no shared sub classes leads to hierarchy.

In the university database the shared sub class in class STUDENT_ASSISTANT

which inherits attributes from both EMPLOYEE and STUDENT inherit the same

attributes from PERSON. If an attribute in the super class is inherited more than

once via different paths in the lattice, then the attributes are included only once in

the shared sub classes.

4. Modeling of UNION Types Using Categories

It is sometimes necessary to represent a collection of entities from different

entity types. In this case, a subclass will represent a collection of entities that is a

subset of the UNION of entities from distinct entity types; we call such a subclass a

union type or a category.

For example, consider three entity types: PERSON, BANK, and COMPANY.

In a database for vehicle registration, an owner of a vehicle can be a person, a bank

or a company. We need to create a class that includes entities of all three types to

play the role of vehicle owner.

A category OWNER that is a subclass of the UNION of the three entity sets of

COMPANY, BANK, and PERSON is created for this purpose. We display

categories in an EER diagram as shown below.

MCA Page 52

Figure: Two categories (union types): OWNER and REGISTERED_VEHICLE.

The superclasses COMPANY, BANK, and PERSON are connected to the

circle with the ‘∪’ symbol, which stands for the set union operation.

A category such as REGISTERED_VEHICLE in Figure implies that only cars

and trucks, but not other types of entities, can be members of

REGISTERED_VEHICLE. A category can be total or partial. A total category

holds the union of all entities in its superclasses, whereas a partial category can

hold a subset of the union. A total category is represented by a double line

connecting the category and the circle, whereas a partial category is indicated by a

single line.

MCA Page 53

The UNIVERSITY Database Example

MCA Page 54

The Relational Data Model and Relational Database Constraints

Relational Model Constraints and Relational Database Schemas

There are many restrictions or constraints on the actual values in the database.

These constraints are derived from the rules in the world.

Constraints on databases can generally be divided into three main categories:

1. Constraints are inherent in the data model. These constraints are called

implicit constraints.

2. Constraints are directly expressed in schemas of the data model. These

constraints or explicit constraints.

3. Constraints are not directly expressed in the schemas of the data model, and

hence must be expressed by the application programs. These constraints are

called application-based constraints.

The relational model we mainly used schema based constraints. The schema

based constraints are:

a) Domain constraints,

b) Key constraints and constraints on NULL values.

c) Entity integrity constraints, and

d) Referential integrity constraints.

1. Domain Constraints: Domain constraints specify that within each tuple, the

value of each attribute ‘A’ must be an atomic value from the domain dom(A).

2. Key Constraints and Constraints on NULL Values: A relation is defined as a

set of tuples. The elements of a set are distinct. Any two tuples cannot have the

same combination of values for their attributes. Usually, other subset of attributes

in the relation schema have the same combination of values.

Super Key: Suppose a subset of attributes by SK, then any two distinct tuples t1

and t2 in a relation we have the constraint that:
t1[SK] ≠ t2[SK]

Any such set of attributes SK is called a super key of the relation schema R. A

superkey SK specifies a uniqueness constraints.

MCA Page 55

Key: A superkey can have redundant attributes, a key has no redundancy

attributes.

A key satisfies two properties:

1. Two distinct tuples in the relation cannot have identical values for the

attributes in the key.
2. It is a minimal superkey from which we cannot remove any attribute.

For example, Consider the STUDENT relation. The attribute set {Ssn} is a

key of STUDENT because no two student tuples can have the same value for Ssn.

The super key {Ssn, Name, Age} is a superkey. The superkey {Ssn, Name, Age}

is not a key of STUDENT. Any superkey formed from a single attribute is also a

key.

Candidate Key: In general, a relation schema may have more than one key. Each

of the keys is called a candidate key.

For example, the CAR relation has two candidate keys: License_number and

Engine_serial_number.

It is common to designate one of the candidate keys as the primary key of the

relation.

NOT NULL: Another constraint on attributes specifies NULL values are

permitted or NULL values are not permitted.

For example, if every STUDENT tuple must have a valid, non-NULL value for

the Name attribute, then ‘Name’ of STUDENT is constrained to be NOT NULL.

3. Relational Databases and Relational Database Schemas

A relational database contains many relations, with tuples in relations that are

related in various ways.

A relational database schema ‘S’ is a set of relation schemas S = {R1, R2, … ,

Rm} and a set of integrity constraints IC.

The following Figure shows a relational database schema

COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,

WORKS_ON, DEPENDENT}.
The underlined attribute represents the primary key.

MCA Page 56

A database state that does not obey all the integrity constraints is called not

valid or invalid state and a state that satisfies all the constraints is called a valid

state.

4. Entity Integrity, Referential Integrity, and Foreign Keys:

The entity integrity constraint states that no primary key value can be NULL.

Because the primary key value is used to identify individual tuples in a relation.

Having NULL values for the primary key we cannot identify tuples.

The referential integrity constraint is specified between two relations and is

used to maintain the consistency among tuples in the two relations.

For example, the attribute Dno of EMPLOYEE gives the department number

must match the Dnumber value of some tuple in the DEPARTMENT relation.

To define referential integrity more formally, we define the concept of a foreign

key. The concept of foreign key is to specify a referential integrity constraints

between the two relation schemas R1 and R2.

A set of attributes FK in relation schema R1 is a foreign key of R1 that

references relation R2 if it satisfies the following rules:

MCA Page 57

1. The attributes in FK as the primary key attributes PK of R2; the attributes FK are

said to reference relation R2.

2. A value of FK in a tuple t1 as a value of PK for some tuple t2 or is NULL.

We have t1[FK] = t2[PK], and we say that the tuple t1 references to the tuple t2.

Figure: Referential integrity constraints displayed on the COMPANY relational

database schema.

MCA Page 58

Update Operations

There are three basic operations in relations. They are Insert, Delete, and

Update (or Modify).

Insert is used to insert one or more new tuples in a relation.

Delete is used to delete tuples from relations.

Update is used to change the values of some attributes in existing tuples.

Those operations are applied the integrity constraints specified on the relational

database schema should not be violated.

Insert Operation:

The Insert operation provides a list of attribute values for a new tuple t that is

to be inserted into a relation R. Insert can violate any of the four types of

constraints.

1. Domain constraints: Domain constraints can be violated if an attribute

value is given that does not appear in the corresponding domain.

2. Key constraints: Key constraints can be violated if a key value in the new

tuple t already exists in another tuple in the relation r(R).

3. Entity integrity constraints: These can be violated if any primary key of

the new tuple t is NULL.

4. Referential integrity constraints: These can be violated if the value of any

foreign key refers to a tuple that does not exist in the referenced relation.

Delete Operation:

The Delete operation can violate only referential integrity. If the tuple being

deleted is referenced by foreign keys from other tuples in the database.

Update Operation: The Update (or Modify) operation is used to change the

values of one or more attributes in a tuple of some relation R. It is necessary to

specify a condition on the attributes of the relation to select the tuple (or tuples) to

be modified.

MCA Page 59

UNIT - II

Relational Algebra and Relational Calculus

Relational Algebra

The basic set of operations for the formal relational model is the relational

algebra. These operations enables user to specify basic retrieval request. The result

of a retrieval query is a new relation, which formed one or more relations.

The relational operations can be divided into two groups. One group includes

set operations. The Set operations include UNION, INTERSECTION, SET

DIFFERENCE, and CARTESIAN PRODUCT. The other group include SELECT,

PROJECT, and JOIN.

SELECT and PROJECT operations are unary operations that operate on one

relation. JOIN and other operations are binary operations which operates on two

tables.

Unary Relational Operations

Unary Relational Operations: SELECT and PROJECT

The SELECT Operation:

The SELECT operation selects tuples that satisfy a given condition. We use the

lowercase Greek letter (σ) to denote selection. The condition (predicate) appears as

a subscript to σ. The argument ‘relation’ is given parenthesis following to σ.

In general the SELECT operation is denoted by

σ <selection condition> (R)

The comparison (<, >, ≤, ≥, =, ≠) and logical (AND, OR, NOT) operators are

allowed in conditions.

Example:

1. Select the EMPLOYEE tuples whose dept is 4

σ Dno=4(EMPLOYEE)

MCA Page 60

2. Select the EMPLOYEE tuples whose salary is greater than 30,000

σ Salary>30000(EMPLOYEE)

3. Select the tiples for all employees who either work in dept 4 and

salary > 25000 per year or work in dept 5 and salary > 30000

σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

In SQL, the SELECT condition is typically specified in the WHERE clause of

a query. For example, the following operation:

σDno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *

FROM EMPLOYEE

WHERE Dno=4 AND Salary>25000;

The PROJECT Operation:

The PROJECT operation selects certain columns from the relation and other

columns are discarded, we used the Greek letter ‘π’ to denote the projection. The

column names appears as a subscript of ‘π’, these column names appear in the

result. The argument ‘relation’ is given in the parenthesis following the ‘π’.

Syntax: The general form of the PROJECT operation is

π (attribute list)(Relation)

For example, to list each employee’s first and last name and salary, we can use the

PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

For example, to retrieve the firstname, lastname and salary of all employee who

works in department number 5.

πFname, Lname, Salary(σDno=5(EMPLOYEE))

MCA Page 61

We can explicitly show the sequence of operations, giving a name to each

intermediate relation, and using the assignment operation, denoted by ← (left

arrow), as follows:

DEP5_EMPS ← σDno=5(EMPLOYEE)

RESULT ← πFname, Lname, Salary(DEP5_EMPS)

To rename the attributes in a relation, we simply list the new attribute names in

parentheses, as in the following example:

TEMP ← σDno=5(EMPLOYEE)

R(First_name, Last_name, Salary) ← πFname, Lname, Salary(TEMP)

The RENAME operation has 3 forms as shown below:

ρS(B1, B2, ... , Bn)(R) or ρS(R) or ρ(B1, B2, ... , Bn)(R)

where the symbol ρ (rho) is used to denote the RENAME operator, S

is the new relation name and B1, B2,….Bn are new attribute names.

Relational Algebra Operations from Set Theory

The UNION, INTERSECTION, and MINUS Operations:

These are the binary operations. These operations will take two relations as

input and produce one relation as output.

UNION:

The UNION operation is denoted by ‘U’. The result of ‘R ∪ S’ is a relation

that includes all tuples that are either in R or in S or in both R and S. Duplicate

tuples are eliminated.

Ex: To retrieve the Social Security numbers of all employees who either work in

department 5 or directly supervise an employee who works in department 5, we can

use the UNION operation as follows:

MCA Page 62

DEP5_EMPS ← σDno=5(EMPLOYEE)

RESULT1 ← πSsn(DEP5_EMPS)

RESULT2(Ssn) ← πSuper_ssn(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2

INTERSECTION:

The INTERSECTION operation is denoted by ‘∩’. The result of R ∩ S, is a

relation that includes all tuples that are in both R and S.

SET DIFFERENCE (or MINUS):

The DIFFERENCE operation is denoted by ‘-‘. The result of R – S, is a

relation that includes all tuples that are in ‘R’ but not in ‘S’.

MCA Page 63

Notice that both UNION and INTERSECTION are commutative operations; that is,

R ∪ S = S ∪ R and R ∩ S = S ∩ R

Both UNION and INTERSECTION can be treated as n-ary operations applicable

to any number of relations because both are also associative operations; that is,

R ∪ (S ∪ T) = (R ∪ S) ∪ T and (R ∩ S) ∩ T = R ∩ (S ∩ T)

The MINUS operation is not commutative; that is, in general,

R − S ≠ S – R

The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

The CARTESIAN PRODUCT operation is denoted by ‘×’. The result of R ×

S is a relation that include new element by combining every tuple from relation R

with every tuple from relation S.

Ex: To retrieve a list of names of each female employee dependents.

FEMALE_EMPS ← σSex=‘F’(EMPLOYEE)

EMPNAMES ← πFname, Lname, Ssn(FEMALE_EMPS)

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT

ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS)

RESULT ← πFname, Lname, Dependent_name(ACTUAL_DEPENDENTS)

MCA Page 64

MCA Page 65

Binary Relational Operations

Binary Relational Operations: JOIN and DIVISION

JOIN Operation:

The JOIN operation is denoted by ‘ ’, is used to combine related tuples from

two relations into single tuples.

Ex: Get the manager’s name

Variationsof JOIN: The EQUIJOIN and NATURAL JOIN

EQUIJOIN: The most common use of JOIN involves join conditions with equality

comparisons only. Such a JOIN, where the only comparison operator used is =, is

called an EQUIJOIN.

NATURAL JOIN:

The standard definition of NATURAL JOIN requires that the two join

attributes have the same name in both relations. If this is not the case, a renaming

operation is applied first.

Suppose we want to combine each PROJECT tuple with the DEPARTMENT

tuple that controls the project. In the following example, first we rename the

Dnumber attribute of DEPARTMENT to Dnum—so that it has the same name as

the Dnum attribute in PROJECT—and then we apply NATURAL JOIN:

MCA Page 66

MCA Page 67

The DIVISION Operation:

The DIVISION operation, denoted by ÷. The DIVISION operation is applied

to two relations R(Z) ÷ S(X), where the attributes of S are a subset of the attributes

of R; that is, X ⊆ Z. The result of DIVISION is a relation T(Y) that includes a

tuple t if tuples tR appear in R with tR [Y] = t, and with tR [X] = tS for every tuple tS

in S.

Ex: To retrieve the list of project numbers that ‘John Smith’ works on in the

intermediate relation SMITH_PNOS:

MCA Page 68

Additional Relational Operations

Generalized Projection: The generalized projection operation extends the

projection operation by allowing functions of attributes to be included in the

projection list.

The generalized form can be expressed as:

πF1, F2, ..., Fn (R)

where F1, F2, … , Fn are functions over the attributes in relation R and may

involve arithmetic operations and constant values. This operation is helpful when

developing reports where computed values have to be produced in the columns of a

query result.

As an example, consider the relation

MCA Page 69

EMPLOYEE (Ssn, Salary, Deduction, Years_service)

A report may be required to show

Net Salary = Salary – Deduction,

Bonus = 2000 * Years_service, and

Tax = 0.25 * Salary

Then a generalized projection combined with renaming may be used as follows:

REPORT ← ρ(Ssn, Net_salary, Bonus, Tax)(πSsn, Salary – Deduction, 2000 *

Years_service, 0.25 * Salary(EMPLOYEE))

Aggregate Functions and Grouping:

The basic relational algebra is to specify mathematical aggregate functions

on collections of values from the database. Examples of such functions include

retrieving the average or total salary of all employees or the total number of

employee tuples. Common functions applied to collections of numeric values

include SUM, AVERAGE, MAXIMUM, and MINIMUM. The COUNT function

is used for counting tuples or values.

where <grouping attributes> is a list of attributes of the relation specified in R, and

<function list> is a list of <function> <attribute> pairs. The following functions

such as SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT are allowed in each

pair and <attribute> in relation R.

Ex: 1. To retrieve each department number, the number of employees in the

department, and their average salary.

MCA Page 70

2. Find the total number of employees and their average salary.

Figure:

OUTER JOIN Operations:

The JOIN operation that are necessary to specify certain types of queries. In

NATURAL JOIN operation R * S, only tuples from R that have matching tuples in

S and vice versa appear in the result.

Tuples with NULL values in the join attributes are also eliminated.

A set of operations, called outer joins, were developed for the case where the user

wants to keep all the tuples in R, or all those in S, or all those in both relations in

the result of the JOIN.

LEFT OUTER JOIN:

A LEFT OUTER JOIN is denoted by , keep every tuple in first or left relation R

in the result of R S . If no matching tuples is found in S, then the attributes of S

in the join result are filled with NULL values.

Ex: List of employee names and also name of departments, if they do not manage

one we can indicate it with NULL value,

MCA Page 71

RIGHT OUTER JOIN:

The RIGHT OUTER JOIN, denoted by , keeps every tuple in the second, or

right, relation S in the result of R S. If no matching tuple is found in R, then the

attributes of R in the join result are filled with NULL values.

FULL OUTER JOIN: The full outer join denoted by , keeps all tuples in both

the left and the right relations when no matching tuples are found, padding with

NULL values.

Recursive operation: This operation is applied in between tuples of same type.

For ex, the relationship between an employee and supervisor.

The relationship is described by the foreign key super_ssn of the employee

relation.

Ex: Retrieve the details of supervisors.

MCA Page 72

Examples of Queries in Relational Algebra

All examples refer to the database in the following Figure. In general, the

same query can be stated in numerous ways using the various operations.

MCA Page 73

In this example, we first select the projects located in Stafford, then join them with

their controlling departments, and then join the result with the department

managers. Finally, we apply a project operation on the desired attributes

In this query, we first create a table DEPT5_PROJS that contains the project

numbers of all projects controlled by department 5. Then we create a table

EMP_PROJ that holds (Ssn, Pno) tuples, and apply the division operation. Finally,

we join the result of the division, which holds only Ssn values, with the

EMPLOYEE table to retrieve the Fname, Lname attributes from EMPLOYEE.

MCA Page 74

In this query, we retrieved the project numbers for projects that involve an

employee named Smith as a worker in SMITH_WORKER_PROJS. Then we

retrieved the project numbers for projects that involve an employee named Smith

as manager of the department that controls the project in SMITH_MGR_PROJS.

Finally, we applied the UNION operation on SMITH_WORKER_PROJS and

SMITH_MGR_PROJS.

MCA Page 75

In this query, we retrieve the Ssns of managers in MGRS, and the Ssns of

employees with at least one dependent in EMPS_WITH_DEPS, then we apply the

SET INTERSECTION operation to get the Ssns of managers who have at least one

dependent.

RELATIONAL CALCULUS

We introduce another formal query language for the relational model called

relational calculus. Relational algebra is procedural query language. In that we

must write a sequence of operations in a particular order. Relational calculus is a

nonprocedural query language. A relational calculus expression specifies what is to

be retrieved rather than how to retrieve.

Tuple Relational Calculus:

The tuple relational calculus is based on specifying a number of tuple variables.

Each tuple variable usually renges over a particular database relation, meaning that

the variable may take as its value any individual tuple from that relation.

A simple tupe relational calculus query is of the form:

{ t | COND(t) }

Where t is a tuple variable and COND(t) is a conditional (Boolean) expression.

The result of such query is the set of all tuples t that evaluate COND(t) to TRUE.

These tuples are said to satisfy COND(t).

For example, to find all employees whose salary is above $50,000, we can

write the following tuple calculus expression:

{ t | EMPLOYEE(t) AND t.Salary>50000}

MCA Page 76

The condition EMPLOYEE(t) specifies that the range relation of tuple variable t

is EMPLOYEE. Each EMPLOYEE tuple t that satisfies the condition

t.Salary>50000 will be retrieved.

The above query retrieves all attribute values for each selected EMPLOYEE

tuple t. To retrieve only some of the attributes—say, the first and last names—we

write

{t.Fname, t.Lname | EMPLOYEE(t) AND t.Salary>50000}

Domain Relational Calculus

There is another type of relational calculus called the domain relational

calculus, or simply domain calculus. Historically, while SQL, which was based on

tuple relational calculus, was being developed by IBM Research at San Jose,

California, another language called QBE (Query-By-Example), which is related to

domain calculus, was being developed at the IBM T. J. Watson Research Center in

Yorktown Heights, New York.

Domain calculus differs from tuple calculus in the type of variables used in

formulas:

Rather than having variables range over tuples, the variables range over single

values from domains of attributes.

To form a relation of degree n for a query result, we must have n of these domain

variables—one for each attribute. An expression of the domain calculus is of the

form

{x1, x2, ..., xn | COND(x1, x2, ..., xn, xn+1, xn+2, ..., xn+m)}

where x1, x2, … , xn, xn+1, xn+2, … , xn+m are domain variables that range over

domains (of attributes), and COND is a condition or formula of the domain

relational calculus.

A formula is made up of atoms. The atoms of a formula are slightly different

from those for the tuple calculus and can be one of the following:

MCA Page 77

1. An atom of the form R(x1, x2, … , xj), where R is the name of a relation of

degree j and each xi, 1 ≤ i ≤ j, is a domain variable. This atom states that a

list of values of <x1,x2,…xj> must be a tuple in the relation whose name is

R, where xi is the value of the ith attribute value of the tuple. To make a

domain calculus expression more concise, we can drop the commas in a list

of variables; thus, we can write:

{x1, x2, ..., xn | R(x1 x2 x3) AND ...} instead of:

{x1, x2, ... , xn | R(x1, x2, x3) AND ...}

2. An atom of the form xi op xj , where op is one of the comparison operators

in the set {=,<,>,≤ , ≥, ≠}, and xi and xj are domain variables.

3. An atom of the form xi op c or c op xj , where op is one of the comparison

operators in the set {=,<,>,≤ , ≥, ≠}, xi and xj are domain variables, and c is

a constant value.

In case 1, if the domain variables are assigned values corresponding to a tuple of

the specified relation R, then the atom is TRUE.

In cases 2 and 3, if the domain variables are assigned values that satisfy the

condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,

variables, and quantifiers.

We will use lowercase letters l, m, n, … , x, y, z for domain variables.

Query 0: List the birth date and address of the employee whose name is ‘John B.

Smith’.

Q0: {u, v | (∃q) (∃r) (∃s) (∃t) (∃w) (∃x) (∃y) (∃z)

(EMPLOYEE(qrstuvwxyz) AND q=‘John’ AND r=‘B’ AND s=‘Smith’)}

MCA Page 78

We need ten variables for the EMPLOYEE relation, one to range over each of

the domains of attributes of EMPLOYEE in order. Of the ten variables q, r, s, … , z,

only u and v are free, because they appear to the left of the bar and hence should

not be bound to a quantifier.

We first specify the requested attributes, Bdate and Address, by the free domain

variables u for BDATE and v for ADDRESS. Then we specify the condition for

selecting a tuple following the bar (|)—namely, that the sequence of values

assigned to the variables qrstuvwxyz be a tuple of the EMPLOYEE relation and

that the values for q (Fname), r (Minit), and s (Lname) be equal to ‘John’, ‘B’, and

‘Smith’, respectively.

Query 1: Retrieve the name and address of all employees who work for the

‘Research’ department.

Q1: {q, s, v | (∃z) (∃l) (∃m) (EMPLOYEE(qrstuvwxyz) AND

DEPARTMENT(lmno) AND l=‘Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two

relations, such as m = z in Q1, is a join condition, whereas a condition that relates a

domain variable to a constant, such as l = ‘Research’, is a selection condition.

Query 2: For every project located in ‘Stafford’, list the project number, the

controlling department number, and the department manager’s last name, birth date,

and address.

Q2: {i, k, s, u, v | (∃j)(∃m)(∃n)(∃t)(PROJECT(hijk) AND

EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(lmno) AND k=m AND

n=t AND j=‘Stafford’)}

Query 6: List the names of employees who have no dependents.

Q6: {q, s | (∃t)(EMPLOYEE(qrstuvwxyz) AND

(NOT(∃l)(DEPENDENT(lmnop) AND t=l)))}

Query 7: List the names of managers who have at least one dependent.

Q7: {s, q | (∃t)(∃j)(∃l)(EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(hijk)

AND DEPENDENT(lmnop) AND t=j AND l=t)}

MCA Page 79

Relational Database Design by ER- and EER-to-Relational

Mapping

Relational Database Design Using ER to Relational Mapping

In this chapter we are learning how to design a relational database schema

based on a conceptual schema design. This corresponds to the logical database

design or data model mapping.

We have used seven algorithms to convert the basic ER model construct

entity types (strong and weak), binary relationships (with various structural

constraints), n-ary relationships and attributes (simple, composite and multivalued)

into relations. We have also used some other algorithms how to map

Specialization/Generalization and union types into relations.

An ER Schema diagram for the COMPANY database.

MCA Page 80

ER to Relational Mapping Algorithms:

We describe the steps of an algorithm for ER-to-relational mapping. The ER

diagram for COMPANY schema is converted into relational database schema using

seven algorithms.

Step 1: Mapping of Regular Entity Types:

For each regular (strong) entity type E in the ER schema, create a relation R of

E. Include only the simple component attributes of a composite attribute. Choose

one of the key attributes of E as the primary key for R.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and

PROJECT to correspond to the regular entity types EMPLOYEE, DEPARTMENT,

and PROJECT. We choose Ssn, Dnumber, and Pnumber as primary keys for the

relations EMPLOYEE, DEPARTMENT, and PROJECT respectively.

MCA Page 81

Step 2: Mapping of Weak Entity Types:

For each weak entity type W in the ER schema with owner entity type E,

create a relation R and include all simple of W as attributes of R. In addition,

include as foreign key attributes of R, the primary key attribute of the relation

that correspond to the owner entity. The primary key of R is the combination of

the primary key of the owner and the partial key of the weak entity W.

In our example, we create the relation DEPENDENT in this step to correspond

to the weak entity type DEPENDENT. We include the primary key Ssn of the

EMPLOYEE relation which corresponds to the owner entity type as a foreign key

attribute of DEPENDENT. The primary key of the DEPENDENT relation is the

combination {Essn, Dependent_name}.

Step 3: Mapping of Binary 1:1 Relationship Types:

For each binary 1:1 relationship type R in the ER schema, identify the relations

S and T that correspond to the entity types participating in R. There are three

possible approaches: (1) the foreign key approach, (2) the merged relationship

approach, and (3) the crossreference or relationship relation approach. The first

approach is the most useful.

1. Foreign key approach: Choose one of the relations and S, include as a

foreign key in S the primary key of T. It is better to choose an entity type

with total participation in R in the role of S.

MCA Page 82

In our example, choose the DEPARTMENT relation because its

participate totally on the MANAGES relationship, we include primary key of

the EMPLOYEE relation as foreign key in the DEPARTMENT relation and

rename it to Mgr_ssn. We also include the simple attribute Start_date of the

MANAGES relationship in the DEPARTMENT relation and rename it

Mgr_start_date.

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

2. Merged relation approach: An alternative mapping of a 1:1 relationship

type is to merge the two entity types and the relationship into a single relation.

This is possible when both participations are total, as this would indicate that

the two tables will have the exact same number of tuples at all times.

3. Cross-reference or relationship relation approach: The third option is to

set up a third relation R for the purpose of cross-referencing the primary keys

of the two relations S and T representing the entity types. As we will see, this

approach is required for binary M:N relationships. The relation R is called a

relationship relation (or sometimes a lookup table).

Step 4: Mapping of Binary 1:N Relationship Types:

For each regular binary 1:N relationship type R, identify the relation S that

participating entity type at the N-side of the relationship type. Include as foreign

key in S the primary key of the relation T that participating in ‘R’.

In our example, we map the 1:N relationship types WORKS_FOR,

CONTROLS, and SUPERVISION.

1. For WORKS_FOR, we include the primary key Dnumber of the

DEPARTMENT relation as foreign key in the EMPLOYEE relation.

2. For SUPERVISION, we include the primary key of the EMPLOYEE

relation as foreign key in the EMPLOYEE relation itself.

3. For CONTROLS, we include the primary key Dnumber of DEPARTMENT

relation as foreign key in the PROJECT relation.

MCA Page 83

Step 5: Mapping of Binary M:N Relationship Types:

For each binary M:N relationship type R, create a new relation S to represent

R. Include as foreign key attributes in S the primary keys of the relations that

represent the participating entity types; their combination will form the primary

key of S. Also include any simple attributes of the M:N relationship type as

attributes of S.

In our example, we map the M:N relationship type WORKS_ON by creating

the relation WORKS_ON. We include the primary keys of the PROJECT and

EMPLOYEE relations as foreign keys in WORKS_ON and rename them Pno and

Essn.

Step 6: Mapping of Multivalued Attributes:

For each multivalued attribute A, create a new relation R. This relation R will

include an attribute A, plus the primary key attribute K as a foreign key in R of the

relation that represents the entity type.

In our example, we create a relation DEPT_LOCATIONS. The attribute

Dlocation represents the multivalued attribute LOCATIONS of DEPARTMENT,

whereas Dnumber as foreign key represents the primary key of the

DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the

combination of {Dnumber, Dlocation}.

Step 7: Mapping of N-ary Relationship Types:

For each n-ary relationship type R, where n > 2, create a new relationship

relation S to represent R. Include as foreign key attributes in S. Primary keys of

the relations also include any simple attributes of the n-ary relationship type as

attributes of S.

MCA Page 84

Consider the relationship type SUPPLY as shown below.

This can be mapped to the relation SUPPLY as shown below.

MCA Page 85

Mapping EER Model Constructs to Relations

The mapping of EER model constructs to relations by extending the ER-to-

relational mapping algorithm.

Mapping of Specialization or Generalization

There are several options for mapping a number of subclasses that together

form a specialization such as the {SECRETARY, TECHNICIAN, ENGINEER}

subclasses of EMPLOYEE. The two main options are to map the whole

specialization into a single table, or to map it into multiple tables. Within each

option are variations that depend on the constraints on the

specialization/generalization.

Step 8: Options for Mapping Specialization or Generalization:

Convert each specialization with m subclasses {S1, S2, … , Sm} and

(generalized) superclass C, where the attributes of C are {k, a1, … , an} and k is

the (primary) key, into relation schemas using one of the following options:

Option 8A: Multiple relations—superclass and subclasses: Create a relation L

for C with attributes Attrs(L) = {k, a1, … , an} and PK(L) = k. Create a relation Li

for each subclass Si, 1 ≤ i ≤ m, with the attributes Attrs(Li) = {k} ∪ {attributes of

Si} and PK(Li) = k.

Option 8B: Multiple relations—subclass relations only: Create a relation Li for

each subclass Si, 1 ≤ i ≤ m, with the attributes Attrs(Li) = {attributes of Si} ∪ {k,

a1, … , an} and PK(Li) = k. This option only works for a specialization whose

subclasses are total (every entity in the superclass must belong to (at least) one of

the subclasses).

Option 8C: Single relation with one type attribute: Create a single relation L

with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪ {attributes of

Sm} ∪ {t} and PK(L) = k. The attribute t is called a type (or discriminating)

attribute whose value indicates the subclass to which each tuple belongs, if any.

This option works only for a specialization whose subclasses are disjoint, and has

MCA Page 86

the potential for generating many NULL values if many specific (local) attributes

exist in the subclasses.

Option 8D: Single relation with multiple type attributes. Create a single relation

schema L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪

{attributes of Sm} ∪ {t1, t2, …, tm} and PK(L) = k. Each ti, 1 ≤ i ≤ m, is a

Boolean type attribute indicating whether or not a tuple belongs to subclass Si. This

option is used for a specialization whose subclasses are overlapping.

Mapping of Shared Subclasses (Multiple Inheritance):

A shared subclass, such as ENGINEERING_MANAGER is a subclass of

several superclasses, indicating multiple inheritance. These classes must all have

the same key attribute; otherwise, the shared subclass would be modeled as a

MCA Page 87

category (union type). We can apply any of the options in step 8 to a shared

subclass, subject to the restrictions in step 8 of the mapping algorithm.

In the above Figure, options 8C and 8D are used for the shared subclass

STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation

(Employee_type attribute) and option 8D is used in the STUDENT relation

(Student_assist_flag attribute).

Mapping of Categories (Union Types)

We add another step to the mapping procedure—step 9—to handle categories.

A category (or union type) is a subclass of the union of two or more superclasses

that can have different keys. An example is the OWNER category, which is a

subset of the union of three entity types PERSON, BANK, and COMPANY. The

other category in that REGISTERED_VEHICLE, has two superclasses that have

the same key attribute.

Step 9: Mapping of Union Types (Categories): For mapping a category whose

defining superclasses have different keys, it is customary to specify a new key

attribute, called a surrogate key, when creating a relation to correspond to the union

MCA Page 88

type. The keys of the defining classes are different, so we cannot use any one of

them exclusively to identify all entities in the relation.

In our example, we create a relation OWNER to correspond to the OWNER

category, as illustrated in the following Figure, and include any attributes of the

category in this relation. The primary key of the OWNER relation is the surrogate

key, which we called Owner_id.

Figure: Mapping the EER categories (union types)

MCA Page 89

Schema Definition, Basic Constraints and Queries

SQL Data definition

SQL uses the terms table, row, and column for the formal relational model

terms relation, tuple, and attribute, respectively. The main SQL command for data

definition is the CREATE statement, which can be used to create schemas, tables

(relations), types, and domains, as well as other constructs such as views, assertions,

and triggers.

Schema and Catalog Concepts in SQL

An SQL schema is identified by a schema name and includes an authorization

identifier to indicate the user or account who owns the schema, as well as

descriptors for each element in the schema. Schema elements include tables, types,

constraints, views, domains, and other constructs.

A schema is created via the CREATE SCHEMA statement, which can include

all the schema elements’ definitions.

For example, the following statement creates a schema called COMPANY

owned by the user with authorization identifier ‘Jsmith’. Note that each statement

in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

The CREATE TABLE Command in SQL:

The CREATE TABLE command is used to specify a new relation by giving

it a name and specifying its attributes and initial constraints. The attributes are

specified first, and each attribute is given a name, a data type to specify its domain

of values, and possibly attribute constraints, such as NOT NULL.

Typically, the SQL schema in which the relations are declared is implicitly

specified in the environment in which the CREATE TABLE statements are

executed. Alternatively, we can explicitly attach the schema name to the relation

name, separated by a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

MCA Page 90

SQL CREATE TABLE data definition statements for defining the COMPANY schema:

MCA Page 91

Attribute Data Types:

The basic data types available for attributes include numeric, character string,

bit string, Boolean, date, and time.

Numeric data types include integer numbers of various sizes (INTEGER or INT,

and SMALLINT) and floating-point (real) numbers of various precision (FLOAT

or REAL, and DOUBLE PRECISION).

Character-string data types are either fixed length—CHAR(n) or

CHARACTER(n), where n is the number of characters—or varying length—

VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), where n

is the maximum number of characters.

A Boolean data type has the traditional values of TRUE or FALSE.

The DATE data type has ten positions, and its components are YEAR, MONTH,

and DAY in the form YYYY-MM-DD. The TIME data type has at least eight

positions, with the components HOUR, MINUTE, and SECOND in the form

HH:MM:SS. Only valid dates and times should be allowed by the SQL

implementation.

Specifying Constraints in SQL

Specifying Attribute Constraints and Attribute Defaults:

Because SQL allows NULLs as attribute values, a constraint NOT NULL

may be specified if NULL is not permitted for a particular attribute. This is always

implicitly specified for the attributes that are part of the primary key of each

relation.

It is also possible to define a default value for an attribute by appending the

clause DEFAULT to an attribute definition.

CREATE TABLE DEPARTMENT (… , Mgr_ssn CHAR(9) NOT NULL

DEFAULT ‘888665555’, … ,)

MCA Page 92

Specifying Key and Referential Integrity Constraints:

Because keys and referential integrity constraints are very important, there

are special clauses within the CREATE TABLE statement to specify them.

The PRIMARY KEY clause specifies one or more attributes that make up the

primary key of a relation. If a primary key has a single attribute, the clause can

follow the attribute directly. For example, the primary key of DEPARTMENT can

be specified as follows:

Dnumber INT PRIMARY KEY

The UNIQUE clause specifies alternate (unique) keys, also known as candidate

keys as illustrated in the DEPARTMENT and PROJECT table declarations. The

UNIQUE clause can also be specified directly for a unique key if it is a single

attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

The FOREIGN KEY clause, a referential integrity constraint can be violated

when tuples are inserted or deleted, or when a foreign key or primary key attribute

value is updated.

CREATE TABLE DEPARTMENT (Dname Dnumber Mgr_ssn

Mgr_start_date VARCHAR(15) INT CHAR(9) DATE, NOT NULL, NOT NULL,

NOT NULL, PRIMARY KEY (Dnumber), UNIQUE (Dname), FOREIGN KEY

(Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

Giving Names to Constraints:

A constraint may be given a constraint name, following the keyword

CONSTRAINT. The names of all constraints within a particular schema must be

unique. A constraint name is used to identify a particular constraint in case the

constraint must be dropped later and replaced with another constraint.

MCA Page 93

Schema Change Statements in SQL

The schema evolution commands available in SQL, which can be used to alter

a schema by adding or dropping tables, attributes, constraints, and other schema

elements.

The DROP Command:

The DROP command can be used to drop named schema elements, such as

tables, domains, types, or constraints. One can also drop a whole schema if it is no

longer needed by using the DROP SCHEMA command. There are two drop

behavior options: CASCADE and RESTRICT. For example, to remove the

COMPANY database schema and all its tables, domains, and other elements, the

CASCADE option is used as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is

dropped only if it has no elements in it; otherwise, the DROP command will not be

executed. To use the RESTRICT option, the user must first individually drop each

element in the schema, then drop the schema itself.

The DROP TABLE command not only deletes all the records in the table if

successful, but also removes the table definition from the catalog. If it is desired to

delete only the records but to leave the table definition for future use, then the

DELETE command should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema

elements, such as constraints or domains.

The ALTER Command:

The definition of a base table or of other named schema elements can be

changed by using the ALTER command. For base tables, the possible alter table

actions include adding or dropping a column (attribute), changing a column

definition, and adding or dropping table constraints. For example, to add an

MCA Page 94

attribute for keeping track of jobs of employees to the EMPLOYEE base relation in

the COMPANY schema, we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job

VARCHAR(12);

To drop a column, we must choose either CASCADE or RESTRICT for drop

behavior. If CASCADE is chosen, all constraints and views that reference the

column are dropped automatically from the schema, along with the column. If

RESTRICT is chosen, the command is successful only if no views or constraints

(or other schema elements) reference the column. For example, the following

command removes the attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address

CASCADE;

One can also change the constraints specified on a table by adding or

dropping a named constraint. To be dropped, a constraint must have been given a

name when it was specified. For example, to drop the constraint named

EMPSUPERFK from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE

DROP CONSTRAINT EMPSUPERFK CASCADE;

Basic Queries in SQL

SQL has one basic statement for retrieving information from a database: the

SELECT statement. The SELECT statement is not the same as the SELECT

operation of relational algebra. There are many options and flavors to the SELECT

statement in SQL.

The SELECT-FROM-WHERE Structure of Basic SQL Queries

Queries in SQL can be very complex. We will start with simple queries, and

then progress to more complex ones in a step-by-step manner.

MCA Page 95

The basic form of the SELECT statement, sometimes called a mapping or a

select-from-where block, is formed of the three clauses SELECT, FROM, and

WHERE and has the following form:

SELECT <attribute list>

FROM <table list>

WHERE <condition>;

Where

<attribute list> is a list of attribute names whose values are to be retrieved by the

query.

<table list> is a list of the relation names required to process the query.

<condition> is a conditional (Boolean) expression that identifies the tuples to be

retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute

values with one another and with literal constants are =, <=, >, >=, and <>. These

correspond to the relational algebra operators =, , ≥, and ≠, respectively, and to the

C/C++ programming language operators =, <=, >, >=, and !=. The main syntactic

difference is the not equal operator.

Query 0: Retrieve the birth date and address of the employee(s) whose name is

‘John B. Smith’.

Q0: SELECT Bdate, Address

FROM EMPLOYEE

WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause.

The query selects the individual EMPLOYEE tuples that satisfy the condition of

the WHERE clause, then projects the result on the Bdate and Address attributes

listed in the SELECT clause.

MCA Page 96

Query 1: Retrieve the name and address of all employees who work for the

‘Research’ department.

Q1: SELECT Fname, Lname, Address

FROM EMPLOYEE, DEPARTMENT

WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection

condition that chooses the particular tuple of interest in the DEPARTMENT table,

because Dname is an attribute of DEPARTMENT. The condition Dnumber = Dno

is called a join condition, because it combines two tuples: one from

DEPARTMENT and one from EMPLOYEE, whenever the value of Dnumber in

DEPARTMENT is equal to the value of Dno in EMPLOYEE.

A query that involves only selection and join conditions plus projection

attributes is known as a select-project-join query. The next example is a select-

project-join query with two join conditions.

Query 2: For every project located in ‘Stafford’, list the project number, the

controlling department number, and the department manager’s last name, address,

and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND Plocation =

‘Stafford’;

MCA Page 97

The join condition Dnum = Dnumber relates a project tuple to its controlling

department tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling

department tuple to the employee tuple who manages that department. Each tuple

in the result will be a combination of one project, one department and one

employee. The projection attributes are used to choose the attributes to be

displayed from each combined tuple.

Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables:

In SQL, the same name can be used for two (or more) attributes as long as the

attributes are in different tables. If this is the case, and a multitable query refers to

two or more attributes with the same name, we must qualify the attribute name

with the relation name to prevent ambiguity.

Query Q1 would be rephrased as shown in Q1A. We must prefix the attributes

Name and Dnumber in Q1A to specify which ones we are referring to, because the

same attribute names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT

WHERE DEPARTMENT.Name = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

The ambiguity of attribute names also arises in the case of queries that refer to

the same relation twice, as in the following example.

Query 8: For each employee, retrieve the employee’s first and last name and the

first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn = S.Ssn;

MCA Page 98

In this case, we are required to declare alternative relation names E and S, called

aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the

keyword AS, or it can directly follow the relation name—for example, by writing

EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible to

rename the relation attributes within the query in SQL by giving them aliases. For

example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname,

and so on.

Unspecified WHERE Clause and Use of the Asterisk:

A missing WHERE clause indicates no condition on tuple selection; hence,

all tuples of the relation specified in the FROM clause qualify and are selected for

the query result. If more than one relation is specified in the FROM clause and

there is no WHERE clause, then the CROSS PRODUCT—all possible tuple

combinations—of these relations is selected.

For example, Query 9 selects all EMPLOYEE Ssns and Query 10 selects all

combinations of an EMPLOYEE Ssn and a DEPARTMENT Dname, regardless of

whether the employee works for the department or not.

MCA Page 99

Queries 9 and 10: Select all EMPLOYEE Ssns (Q9) and all combinations of

EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn

FROM EMPLOYEE;

Q10: SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

MCA Page 100

To retrieve all the attribute values of the selected tuples, we do not have to

list the attribute names explicitly in SQL; we just specify an asterisk (*), which

stands for all the attributes. The * can also be prefixed by the relation name or alias;

for example, EMPLOYEE . * refers to all attributes of the EMPLOYEE table.

Examples:

Q1: SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

Q2: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q3: SELECT *

FROM EMPLOYEE, DEPARTMENT;

Tables as Sets in SQL:

SQL usually treats a table not as a set but rather as a multiset; duplicate tuples

can appear more than once in a table, and in the result of a query.

An SQL table with a key is restricted to being a set, since the key value must

be distinct in each tuple. If we want to eliminate duplicate tuples from the result of

an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning

that only distinct tuples should remain in the result. In general, a query with

SELECT DISTINCT eliminates duplicates, whereas a query with SELECT ALL

does not.

Query 11: Retrieve the salary of every employee (Q11) and all distinct salary

values (Q11A).

Q11: SELECT ALL Salary

FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary

FROM EMPLOYEE;

MCA Page 101

Results of additional SQL queries when applied to the COMPANY database state

shown in Figure (a) Q11. (b) Q11A.

SQL has directly incorporated some of the set operations from mathematical

set theory, which are also part of relational algebra. There are set union (UNION),

set difference (EXCEPT), and set intersection (INTERSECT) operations. The

relations resulting from these set operations are sets of tuples; that is, duplicate

tuples are eliminated from the result.

Query 4: Make a list of all project numbers for projects that involve an employee

whose last name is ‘Smith’, either as a worker or as a manager of the department

that controls the project.

Q4A: (SELECT DISTINCT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND Lname = ‘Smith’)

UNION

(SELECT DISTINCT Pnumber

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber = Pno AND Essn = Ssn AND Lname = ‘Smith’);

MCA Page 102

Substring Pattern Matching and Arithmetic Operators:

There are several more features of SQL. The first feature allows comparison

conditions on only parts of a character string, using the LIKE comparison operator.

This can be used for string pattern matching. Partial strings are specified using two

reserved characters: % replaces an arbitrary number of zero or more characters, and

the underscore (_) replaces a single character. For example, consider the following

query:

Query12: Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname

FROM EMPLOYEE

WHERE Address LIKE ‘%Houston,TX%’;

To retrieve all employees who were born during the 1970s, we can use

Query Q12A. Here, ‘7’ must be the third character of the string (according to our

format for date), so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore

serving as a placeholder for an arbitrary character.

Query 12: . Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname

FROM EMPLOYEE

WHERE Bdate LIKE ‘_ _ 7 __________ ’;

Another feature allows the use of arithmetic in queries. The standard arithmetic

operators for addition (+), subtraction (−), multiplication (*), and division (/) can

be applied to numeric values. For example, suppose all employees who work on

the ‘ProductX’ project a 10% raise; we can issue Query 13 to see what their

salaries would become. This example also shows how we can rename an attribute

in the query result using AS in the SELECT clause.

MCA Page 103

Query 13. Show the resulting salaries if every employee working on the

‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal

FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND

P.Pname = ‘ProductX’;

In addition, an interval value is the result of the difference between two date,

time, or timestamp values. Another comparison operator, which can be used for

convenience, is BETWEEN, which is illustrated in Query 14.

Query 14: Retrieve all employees in department 5 whose salary is between

$30,000 and $40,000.

Q14: SELECT *

FROM EMPLOYEE

WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to

the condition ((Salary >= 30000) AND (Salary <= 40000)).

Ordering of Query Results:

SQL allows the user to order the tuples in the result of a query by the values of

one or more of the attributes that appear in the query result, by using the ORDER

BY clause.

Query 15: Retrieve a list of employees and the projects they are working on,

ordered by department and, within each department, ordered alphabetically by last

name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS

W,

PROJECT AS P

WHERE D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =

P.Pnumber

ORDER BY D.Dname, E.Lname, E.Fname

MCA Page 104

The default order is in ascending order of values. We can specify the keyword

DESC if we want to see the result in a descending order of values. The keyword

ASC can be used to specify ascending order explicitly.

INSERT, DELETE, and UPDATE Statements in SQL

In SQL, three commands can be used to modify the database: INSERT,

DELETE, and UPDATE.

The INSERT Command:

In its simplest form, INSERT is used to add a single tuple (row) to a relation

(table). We must specify the relation name and a list of values for the tuple. The

values should be listed in the same order in which the corresponding attributes

were specified in the CREATE TABLE command.

For example, to add a new tuple to the EMPLOYEE relation and specified in the

CREATE TABLE EMPLOYEE … command.

Q1: INSERT INTO EMPLOYEE

VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98 Oak

Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

A second form of the INSERT statement allows the user to specify explicit

attribute names that correspond to the values provided in the INSERT command.

For example, to enter a tuple for a new EMPLOYEE for whom we know only the

Fname, Lname, Dno, and Ssn attributes.

Q2: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

The DELETE Command:

The DELETE command removes tuples from a relation. It includes a WHERE

clause, similar to that used in an SQL query, to select the tuples to be deleted.

Tuples are explicitly deleted from only one table at a time. Depending on the

MCA Page 105

number of tuples selected by the condition in the WHERE clause, zero, one, or

several tuples can be deleted by a single DELETE command.

Q3: DELETE FROM EMPLOYEE

WHERE Lname = ‘Brown’;

Q4: DELETE FROM EMPLOYEE

WHERE Ssn = ‘123456789’;

Q5: DELETE FROM EMPLOYEE

WHERE Dno = 5;

Q6: DELETE FROM EMPLOYEE;

The UPDATE Command:

The UPDATE command is used to modify attribute values of one or more

selected tuples. As in the DELETE command, a WHERE clause in the UPDATE

command selects the tuples to be modified from a single relation. However,

updating a primary key value may propagate to the foreign key values of tuples in

other relations if such a referential triggered action is specified in the referential

integrity constraints of the DDL.

An additional SET clause in the UPDATE command specifies the attributes to

be modified and their new values. For example, to change the location and

controlling department number of project number 10 to ‘Bellaire’ and 5,

respectively.

Q7: UPDATE PROJECT

SET Plocation = ‘Bellaire’, Dnum = 5

WHERE Pnumber = 10;

In the SET clause, the reference to the Salary attribute on the right refers to the

old Salary value before modification, and the one on the left refers to the new

Salary value after modification:

MCA Page 106

Q8: UPDATE EMPLOYEE

 SET Salary = Salary * 1.1

 WHERE Dno = 5;

More Complex SQL Queries

Nested Queries, Tuples, and Set/Multiset Comparisons:

Some queries require that existing values in the database be fetched and then

used in a comparison condition. Such queries can be conveniently formulated by

using nested queries, which are complete select-from-where blocks within another

SQL query. That other query is called the outer query. These nested queries can

also appear in the WHERE clause or the FROM clause or the SELECT clause or

other SQL clauses as needed.

In the example, the first nested query selects the project numbers of projects that

have an employee with last name ‘Smith’ involved as manager, whereas the second

nested query selects the project numbers of projects that have an employee with

last name ‘Smith’ involved as worker. In the outer query, we use the OR logical

connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in

the result of either nested query.

Q: SELECT DISTINCT Pnumber

FROM PROJECT

WHERE Pnumber IN

(SELECT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND Lname

=

‘Smith’)

OR

Pnumber IN

(SELECT Pno

FROM WORKS_ON, EMPLOYEE

WHERE Essn = Ssn AND Lname = ‘Smith’);

MCA Page 107

SQL allows the use of tuples of values in comparisons by placing them

within parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE (Pno, Hours) IN (SELECT Pno, Hours

FROM WORKS_ON

WHERE Essn = ‘123456789’);

This query will select the Essns of all employees who work the same (project,

hours) combination on some project that employee ‘John Smith’ (whose Ssn =

‘123456789’) works on. In this example, the IN operator compares the subtuple of

values in parentheses (Pno, Hours) within each tuple in WORKS_ON with the set

of type-compatible tuples produced by the nested query.

An example is the following query, which returns the names of employees whose

salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

FROM EMPLOYEE

WHERE Dno = 5);

Correlated Nested Queries:

Whenever a condition in the WHERE clause of a nested query references

some attribute of a relation declared in the outer query, the two queries are said to

be correlated.

In general, a query written with nested select-from-where blocks and using the

= or IN comparison operators can always be expressed as a single block query.

MCA Page 108

Q: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

AND E.Fname = D.Dependent_name;

Aggregate Functions in SQL:

Aggregate functions are used to summarize information from multiple tuples

into a single-tuple summary. Grouping is used to create subgroups of tuples before

summarization. Grouping and aggregation are required in many database

applications, and we will introduce their use in SQL through examples. A number

of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.

Query: Find the sum of the salaries of all employees, the maximum salary, the

minimum salary, and the average salary.

Q: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table.

Query:. Find the sum of the salaries of all employees of the ‘Research’ department,

as well as the maximum salary, the minimum salary, and the average salary in this

department.

Q: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)

WHERE Dname = ‘Research’;

Queries 1 and 2. Retrieve the total number of employees in the company (Q1) and

the number of employees in the ‘Research’ department (Q2).

Q1: SELECT COUNT (*)

FROM EMPLOYEE;

MCA Page 109

Q2: SELECT COUNT (*)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO = DNUMBER AND DNAME = ‘Research’;

Grouping: The GROUP BY and HAVING Clauses:

In many cases we want to apply the aggregate functions to subgroups of tuples

in a relation, where the subgroups are based on some attribute values. Each group

(partition) will consist of the tuples that have the same value of some attribute(s),

called the grouping attribute(s). SQL has a GROUP BY clause for this purpose.

The GROUP BY clause specifies the grouping attributes, which should also appear

in the SELECT clause.

Query: For each department, retrieve the department number, the number of

employees in the department, and their average salary.

Q: SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

MCA Page 110

Views (Virtual Tables) in SQL

Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables.

These other tables can be base tables or previously defined views. A view does not

necessarily exist in physical form; it is considered to be a virtual table, in contrast

to base tables, whose tuples are always physically stored in the database.

Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is

given a (virtual) table name (or view name), a list of attribute names, and a query to

specify the contents of the view. If none of the view attributes results from

applying functions or arithmetic operations, we do not have to specify new

attribute names for the view, since they would be the same as the names of the

attributes of the defining tables in the default case. The views in V1 and V2 create

virtual tables whose schemas are illustrated in Figure when applied to the database

schema.

V1: CREATE VIEW WORKS_ON1

AS SELECT Fname, Lname, Pname, Hours

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn = Essn AND Pno = Pnumber;

V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)

AS SELECT Dname, COUNT (*), SUM (Salary)

FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber = Dno

GROUP BY Dname;

MCA Page 111

Figure: Two views specified on the database schema

WORKS_ON1

Fname Lname Pname Hours

DEPT_INFO

Dept_name No_of_emps Total_sal

A view is supposed to be always up-to-date; if we modify the tuples in the

base tables on which the view is defined, the view must automatically reflect these

changes,=.

If we do not need a view anymore, we can use the DROP VIEW command to

dispose of it. For example, to get rid of the view V1, we can use the SQL statement:

V1A: DROP VIEW WORKS_ON1;

View Implementation, View Update:

DBMS can efficiently implement a view for efficient querying is complex.

Two main approaches have been suggested. One strategy, called query

modification, involves modifying or transforming the view query into a query on

the underlying base tables.

For example, the query QV1 would be automatically modified to the following

query by the DBMS.

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn = Essn AND Pno = Pnumber AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined

via complex queries that are time-consuming to execute, especially if multiple view

queries are going to be applied to the same view within a short period of time.

MCA Page 112

The second strategy, called view materialization, involves physically creating a

temporary or permanent view table when the view is first queried or created and

keeping that table on the assumption that other queries on the view will follow.

In general, an update on a view defined on a single table without any

aggregate functions can be mapped to an update on the underlying base table under

certain conditions. For a view involving joins, an update operation may be mapped

to update operations on the underlying base relations in multiple ways.

Consider the WORKS_ON1 view, and suppose that we issue the command to

update the PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This

view update is shown in UV1:

UV1: UPDATE WORKS_ON1

SET Pname = ‘ProductY’

WHERE Lname = ‘Smith’ AND Fname = ‘John’

AND Pname = ‘ProductX’;

Views as Authorization Mechanisms:

SQL query authorization statements (GRANT and REVOKE), we present

database security and authorization mechanisms. The views can be used to hide

certain attributes or tuples from unauthorized users. Suppose a certain user is only

allowed to see employee information for employees who work for department 5;

then we can create the following view DEPT5EMP and grant the user the privilege

to query the view but not the base table EMPLOYEE itself. This user will only be

able to retrieve employee information for employee tuples whose Dno = 5, and will

not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

MCA Page 113

In a similar manner, a view can restrict a user to only see certain columns; for

example, only the first name, last name, and address of an employee may be visible

as follows:

CREATE VIEW BASIC_EMP_DATA AS

SELECT Fname, Lname, Address

FROM EMPLOYEE;

Database Stored Procedures

Database stored procedures, which are program modules that are stored by the

DBMS at the database server.

Database Stored Procedures and Functions:

In our presentation of database programming techniques so far, there was an

implicit assumption that the database application program was running on a client

machine, or more likely at the application server computer in the middle-tier of a

three-tier client-server architecture.

For many applications, it is sometimes useful to create database program

modules—procedures or functions—that are stored and executed by the DBMS at

the database server. These are historically known as database stored procedures.

Stored procedures are useful in the following circumstances:

1. If a database program is needed by several applications, it can be stored at the

server and invoked by any of the application programs. This reduces duplication of

effort and improves software modularity.

2. Executing a program at the server can reduce data transfer and communication

cost between the client and server in certain situations.

3. These procedures can enhance the modeling power provided by views by

allowing more complex types of derived data to be made available to the database

users via the stored procedures.

In general, many commercial DBMSs allow stored procedures and functions to

be written in a general-purpose programming language. Alternatively, a stored

procedure can be made of simple SQL commands such as retrievals and updates.

The general form of declaring stored procedures is as follows:

MCA Page 114

CREATE PROCEDURE <procedure name> (<parameters>)

<local declarations>

<procedure body> ;

The parameters and local declarations are optional, and are specified only if

needed. For declaring a function, a return type is necessary, so the declaration form

is:

CREATE FUNCTION <function name> (<parameters>)

RETURNS <return type>

<local declarations>

<function body>;

If the procedure (or function) is written in a general-purpose programming

language, it is typical to specify the language as well as a file name where the

program code is stored. For example, the following format can be used:

CREATE PROCEDURE <procedure name> (<parameters>)

LANGUAGE <programming language name>

EXTERNAL NAME <file path name>;

The procedures and functions are stored persistently by the DBMS, it

should be possible to call them from the various SQL interfaces and programming

techniques.The CALL statement in the SQL standard can be used to invoke a

stored procedure—either from an interactive interface or from embedded SQL or

SQLJ. The format of the statement is as follows:

CALL <procedure or function name> (<argument list>);

MCA Page 115

UNIT - III

Relational Databases Design

As with many design problems, database design may be performed using two

approaches: bottom-up or top-down. A bottom-up design methodology (also

called design by synthesis) considers the basic relationships among individual

attributes as the starting point and uses those to construct relation schemas. This

approach is not very popular in practice. In contrast, a top-down design

methodology (also called design by analysis) starts with a number of groupings of

attributes into relations that exist together naturally, for example, on an invoice, a

form, or a report.

Relational database design ultimately produces a set of relations. The implicit

goals of the design activity are information preservation and minimum redundancy.

Information is very hard to quantify—hence we consider information preservation

in terms of maintaining all concepts, including attribute types, entity types, and

relationship types as well as generalization/specialization relationships.

Informal Design Guidelines for Relation Schemas

Before discussing the formal theory of relational database design, wwe

discuss four informal guidelines that may be used as measures to determine the

quality of relation schema design:

1. Making sure that the semantics of the attributes is clear in the schema

2. Reducing the redundant information in tuples

3. Reducing the NULL values in tuples

4. Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another.

1.Imparting Clear Semantics to Attributes in Relation:

Whenever we group attributes to form a relation schema, we assume that

attributes belonging to one relation have certain real-world meaning and a proper

MCA Page 116

interpretation associated with them. The semantics of a relation refers to its

meaning resulting from the interpretation of attribute values in a tuple.

The semantics of the relation is a relation exactly means and stands for—the

better the relation schema design. To illustrate this, consider Figure 1, a simplified

version of the COMPANY relational database schema, and Figure 2, which

presents an example of populated relation states of this schema.

The meaning of the EMPLOYEE relation schema is simple: Each tuple

represents an employee, with values for the employee’s name (Ename), Social

Security number (Ssn), birth date (Bdate), and address (Address), and the number

of the department that the employee works for (Dnumber). The Dnumber attribute

is a foreign key that represents an implicit relationship between EMPLOYEE and

DEPARTMENT.

The semantics of the DEPARTMENT and PROJECT schemas are also

straightforward: Each DEPARTMENT tuple represents a department entity, and

each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of

DEPARTMENT relates a department to the employee who is its manager, whereas

Dnum of PROJECT relates a project to its controlling department; both are foreign

key attributes.

Figure: 1 A simplified COMPANY relational database schema.

Figure: 2 Sample database state for the relational database schema in Figure 1

MCA Page 117

MCA Page 118

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do

not combine attributes from multiple entity types and relationship types into a

single relation. Intuitively, if a relation schema corresponds to one entity type or

one relationship type, it is straightforward to explain its meaning. Otherwise, if the

relation corresponds to a mixture of multiple entities and relationships, semantic

ambiguities will result and the relation cannot be easily explained.

Examples of Guideline 1: The relation schemas in the foloowing Figures (a) and

(b) also have clear semantics. A tuple in the EMP_DEPT relation schema in Figure

(a) represents a single employee but includes, along with the Dnumber, additional

information—namely, the name (Dname) of the department for which the

employee works and the Social Security number (Dmgr_ssn) of the department

manager. For the EMP_PROJ relation in Figure (b), each tuple relates an employee

to a project but also includes the employee name (Ename), project name (Pname),

and project location (Plocation).

2. Redundant Information in Tuples and Update Anomalies:

One goal of schema design is to minimize the storage space used by the base

relation. Grouping attributes into relation schemas has a significant effect on

storage space. For example, compare the space used by the two base relations

EMPLOYEE and DEPARTMENT in Figure 2.

MCA Page 119

In Figure 3, which is the result of applying the NATURAL JOIN operation to

EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attribute values pertaining

to a particular department (Dnumber, Dname, Dmgr_ssn) are repeated for every

employee who works for that department. Only the department number (Dnumber)

is repeated in the EMPLOYEE relation for each employee who works in that

department as a foreign key. Similar comments apply to the EMP_PROJ relation

(see Figure 4), which augments the WORKS_ON relation with additional attributes

from EMPLOYEE and PROJECT.

Figure 3: Sample states for EMP_DEPT and EMP_PROJ resulting from applying

NATURAL JOIN to the relations in Figure 2

MCA Page 120

Storing natural joins of base relations leads to an additional problem referred

to as update anomalies. These can be classified into insertion anomalies, deletion

anomalies, and modification anomalies.

Insertion Anomalies: Insertion anomalies can be differentiated into two types,

illustrated by the following examples based on the EMP_DEPT relation:

1. To insert a new employee tuple into EMP_DEPT, we must include either the

attribute values for the department that the employee works for, or NULLs.

For example, to insert a new tuple for an employee who works in department

number 5, we must enter all the attribute values of department 5 correctly so

that they are consistent with the corresponding values for department 5 in

other tuples in EMP_DEPT

2. It is difficult to insert a new department that has no employees as yet in the

EMP_DEPT relation. The only way to do this is to place NULL values in the

attributes for employee. This violates the entity integrity for EMP_DEPT

because its primary key Ssn cannot be null.

Deletion Anomalies: If we delete from EMP_DEPT an employee tuple that

happens to represent the last employee working for a particular department, the

information concerning that department is lost inadvertently from the database.

This problem does not occur in the database of Figure 2 because DEPARTMENT

tuples are stored separately.

Modification Anomalies: In EMP_DEPT, if we change the value of one of the

attributes of a particular department—say, the manager of department 5—we must

update the tuples of all employees who work in that department; otherwise, the

database will become inconsistent.

Guideline 2: Design the base relation schemas so that no insertion, deletion, or

modification anomalies are present in the relations. If any anomalies are present,

note them clearly and make sure that the programs that update the database will

operate correctly.

MCA Page 121

3. NULL Values in Tuples: In some schema designs we may group many

attributes together into a “fat” relation. If many of the attributes do not apply to all

tuples in the relation, we end up with many NULLs in those tuples. This can waste

space at the storage level. Another problem with NULLs is how to account for

them when aggregate operations such as COUNT or SUM are applied. SELECT

and JOIN operations involve comparisons; if NULL values are present, the results

may become unpredictable. Moreover, NULLs can have multiple interpretations,

such as the following:

1. The attribute does not apply to this tuple. For example, Visa_status may not

apply to U.S. students.

2. The attribute value for this tuple is unknown. For example, the Date_of_birth

may be unknown for an employee.

3. The value is known but absent; that is, it has not been recorded yet. For example,

the Home_Phone_Number for an employee may exist, but may not be available

and recorded yet.

Having the same representation for all NULLs compromises the different

meanings they may have. Therefore, we state another guideline.

Guideline 3: As far as possible, avoid placing attributes in a base relation whose

values may frequently be NULL. If NULLs are unavoidable, make sure that they

apply in exceptional cases only and do not apply to a majority of tuples in the

relation.

4. Generation of Spurious Tuples: Suppose that we used EMP_PROJ1 and

EMP_LOCS as the base relations instead of EMP_PROJ. This produces a

particularly bad schema design because we cannot recover the information that was

originally in EMP_PROJ from EMP_PROJ1 and EMP_LOCS. If we attempt a

NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result produces

many more tuples than the original set of tuples in EMP_PROJ.

In Figure 4, the result of applying the join to only the tuples for employee with

Ssn = “123456789” is shown. Additional tuples that were not in EMP_PROJ are

called spurious tuples because they represent spurious information that is not valid.

The spurious tuples are marked by asterisks (*) in Figure 4. It is left to the reader to

complete the result of NATURAL JOIN operation on the EMP_PROJ1 and

EMP_LOCS tables in their entirety and to mark the spurious tuples in this result.

MCA Page 122

Figure: The result of projecting the extension of EMP_PROJ from Figure 3 onto

the relations EMP_LOCS and EMP_PROJ1.

MCA Page 123

Figure 4: Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and

EMP_LOCS of above Figure just for employee with Ssn = “123456789”.

Generated spurious tuples are marked by asterisks.

Guideline 4: Design relation schemas so that they can be joined with equality

conditions on attributes that are appropriately related (primary key, foreign key)

pairs in a way that guarantees that no spurious tuples are generated. Avoid relations

that contain matching attributes that are not (foreign key, primary key)

combinations because joining on such attributes may produce spurious tuples.

MCA Page 124

Functional Dependencies

A functional dependency is a constraint between two sets of attributes from the

database. Suppose that our relational database schema has n attributes A1, A2, … ,

An; let us think of the whole database as being described by a single universal

relation schema R = {A1, A2, … , An}.

Definition: A functional dependency, denoted by X → Y, between two sets of

attributes X and Y that are subsets of R specifies a constraint on the possible tuples

that can form a relation state r of R. The constraint is that, for any two tuples t1 and

t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

1. This means that the values of the Y component of a tuple in ‘r’ depends on,

the values of the X component.

2. Alternatively, the values of the X component determine the values of the Y

component. We also say that the functional dependency from X to Y, or that

Y is functionally dependent on X. The abbreviation for functional

dependency is FD or f.d. The set of attributes X is called the left-hand side

of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if,

whenever two tuples of r(R) agree on their X-value, they must necessarily agree on

their Y-value.

1. X is a candidate key of R—this implies that X → Y for any subset of attributes

Y of R.

2. If X → Y in R, this does not say whether or not Y → X in R.

Consider the relation schema EMP_PROJ:

EMP_PROJ

The functional dependencies of the above rational schema is

Ssn Pnumber Hours Ename Pname Plocation

MCA Page 125

a. Ssn → Ename

b. Pnumber → {Pname, Plocation}

c. {Ssn, Pnumber} → Hours

These functional dependencies specify that

(a) The value of an employee’s Social Security number (Ssn) uniquely determines

the employee name (Ename),

(b) The value of a project’s number (Pnumber) uniquely determines the project

name (Pname) and location (Plocation), and

(c) A combination of Ssn and Pnumber values uniquely determines the number of

hours the employee currently works on the project per week (Hours).

The following figure shows the diagrammatic notation of FD.

Each FD is displayed as a horizontal line. The left hand side attributes of the

FD are connected by a vertical lines to the line representing the FD, while the

right hand side attributes are connected by arrows pointing towards the attributes.

Inference Rules for Funtional Dependencies:

A functional dependency is a property of the relation schema R, not of a

particular legal relation state r of R. Therefore, an FD cannot be inferred

automatically from a given relation extension r but must be defined explicitly by

someone who knows the semantics of the attributes of R.

For example, the following Figure shows a particular state of the TEACH

relation schema. Although at first glance we may think that Text → Course, we

cannot confirm this unless we know that it is true for all possible legal states of

TEACH. For example, because ‘Smith’ teaches both ‘Data Structures’ and

‘Database Systems,’ we can conclude that Teacher does not functionally determine

Course.

MCA Page 126

Figure: A relation state of TEACH with a possible functional dependency

TEXT → COURSE. However, TEACHER → COURSE,
TEXT → TEACHER and COURSE → TEXT are ruled out.

TEACH

TEACHER COURSE TEXT

Smith Data Structures Bartram

Smith Database Systems Martin

Hall Compilers Hoffman

Brown Data Structures Horowitz

Definition: The set of all dependencies that include ‘F’ as well as all dependencies

that can be inferred from ‘F’ is called the closure of ‘F’, it is denoted by F1.

For example, suppose that the se fo functional dependecies on the relational

schema EMP_DEPT is

F = {Ssn → { Ename, Bdate, Address, Dnumber }

Dnumber → { Dname, Dmgr_ssn }}

Some additonal functional dependencies that we can infer from ‘F’ are the

following:

Ssn → { Dname, Dmgr_ssn }

Ssn → Ssn
Dnumber → Dname

To determine a systematic way to infet dependencies we must discover a set of

inference rules that can be used to infer new dependencies from a given set of

dependencies.

The FD{X,Y} → Z is abbreviated to XY→Z and the FD{X,Y,Z}→ {U,V} is

abbreviated to XYZ→UV.

MCA Page 127

The following 6 rules IR1 through IR6 are well known inference rules for

functional dependencies.

IR1(Reflexive rule): If X ⸧ Y then X→ Y

IR2(Augmentarion rile): {X→Y} = XZ→YZ

IR3(Transitive rule): {X→Y, Y→Z} = X→ Z

IR4(Decomposition rule): {X→YZ} = X→Y

IR5(Union rule): {X→ Y, X→ Z} = X→YZ

IR6(Pseudotransitive rule): { X→ Y, WY→Z } = {WX→ Z}

Equivalence of Sets of Functional Dependencies:

A set of functinal dependencies ‘F’ is said to cover another set of functional

dependencies ‘E’ if every FD in E is also F, i.e., if every dependency in E can be

inferred from F alternatively we can say that E is covered by F.

Definition: Two sets of functional dependencies E and F are equivalent if E* = F*.

Therefore, equivelence means that every FD in can be inferred from F and every

FD in F can be inferred from E, that is E id equivalent to F if both conditions E

covers F and F covers E hold.

Minimal Sets of Functional Dependencies:

A minimal cover of a set of functinal dependencies E is a set of functional

dependencies F that satisfies the properly that every dependency in E is in the

closure F* of F.

Definition: A minimal cover of a set of functional dependencies E is a minimal set

of dependencies that is equivalent to E.

MCA Page 128

Normal Forms Based on Primary Keys

A set of functional dependencies is given for each relation, and that each

relation has a designated primary key; this information combined with the tests

(conditions) for normal forms drives the normalization process for relational

schema design.

Normalization: In database design process the table is the basic building

block. The ER modeling gives good table structures. But it is possible to create

poor table.

Normalization is an analysis of functional dependency between the attributes

of a relation; it reduces the complex user views into set of stable subgroups or

fields.

The normalization process, as first proposed by Codd (1972a), This process is

used to create good table structures to minimize data redundancies. The process,

which proceeds in a top-down fashion.

Normalization works through a series of stages called normal forms. Initially,

Codd proposed three normal forms, which he called first, second, and third normal

form (1NF, 2NF, 3NF) . A stronger definition of 3NF—called Boyce-Codd normal

form (BCNF)—was proposed later by Boyce and Codd. All these normal forms are

based on a single analytical tool: the functional dependencies among the attributes

of a relation. Later, a fourth normal form (4NF) and a fifth normal form (5NF)

were proposed, based on the concepts of multivalued dependencies and join

dependencies, respectively.

Normalization of data can be considered a process of analyzing the given

relation schemas based on their FDs and primary keys to achieve the desirable

properties of (1) minimizing redundancy and (2) minimizing the insertion, deletion,

and update anomalies. It can be considered as a “filtering” or “purification” process

to make the design have successively better quality. An unsatisfactory relation

schema that does not meet the condition for a normal form.

Definition: The normal form of a relation refers to the highest normal form

condition that it meets, and hence indicates the degree to which it has been

normalized.

MCA Page 129

Practical Use of Normal Forms:

Most practical design projects in commercial and governmental environment

acquire existing designs of databases from previous designs, from designs in legacy

models, or from existing files. Existing designs are evaluated by applying the tests

for normal forms, and normalization is carried out in practice so that the resulting

designs are of high quality and meet the desirable properties stated previously.

Although several higher normal forms have been defined, such as the 4NF and 5NF.

Designers and users must either already know them or discover them as a part of

the business. Thus, database design as practiced in industry today pays particular

attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need not normalize to

the highest possible normal form. Relations may be left in a lower normalization

status, such as 2NF.

Definition: Denormalization is the process of storing the join of higher normal

form relations as a base relation, which is in a lower normal form.

Definitions of Keys and Attributes Participating in Keys:

The definitions of keys of a relation schema:

Definition: A superkey of a relation schema R = {A1, A2, … , An} is a set of

attributes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation

state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional

property that removal of any attribute from K will cause K not to be a superkey

anymore.

The difference between a key and a superkey is that a key has to be minimal;

that is, if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of

R for any Ai, 1 ≤ i ≤ k. In following Figure, {Ssn} is a key for EMPLOYEE,

whereas {Ssn}, {Ssn, Ename}, {Ssn, Ename, Bdate}, and any set of attributes that

includes Ssn are all superkeys.

MCA Page 130

If a relation schema has more than one key, each is called a candidate key.

One of the candidate keys is arbitrarily designated to be the primary key, and the

others are called secondary keys. In a practical relational database, each relation

schema must have a primary key. If no candidate key is known for a relation, the

entire relation can be treated as a default superkey. In the above Figure, {Ssn} is

the only candidate key for EMPLOYEE, so it is also the primary key.

Definition: An attribute of relation schema R is called a prime attribute of R if it

is a member of some candidate key of R. An attribute is called nonprime if it is not

a prime attribute—that is, if it is not a member of any candidate key.

First Normal Form:

1NF disallows having a set of values, a tuple of values, or a combination of

both as an attribute value for a single tuple. The only attribute values permitted by

1NF are single atomic (or indivisible) values.

Definition: A relation is said to be in first normal form it is already in

unnormalized form and it has no repeating groups.

Consider the DEPARTMENT relation whose primary key is Dnumber, and

suppose that we extend it by including the Dlocations attribute as shown in the

following Figure (a). We assume that each department can have a number of

locations. As we can see, this is not in 1NF because Dlocations is not an atomic

attribute, as illustrated by the first tuple in Figure (b).

Figure: a) A relation schema that is not in 1NF.

Figure:b) Sample state of relation DEPARTMENT.

MCA Page 131

The DEPARTMENT relation to achieve 1NF, expand the key so that there will

be a separate tuple in the original DEPARTMENT relation for each location of a

DEPARTMENT, as shown in Figure (c). In this case, the primary key becomes the

combination {Dnumber, Dlocation}. This solution has the disadvantage of

introducing redundancy in the relation and hence is rarely adopted.

Figure: c) 1NF version of the same relation with redundancy.

Second Normal Form:

Second normal form (2NF) is based on the concept of full functional

dependency. A functional dependency X → Y is a full functional dependency .

Definition: A relation schema R is in 2NF if every nonprime attribute A in R is

fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand

side attributes are part of the primary key. If the primary key contains a single

attribute, the test need not be applied at all.

The EMP_PROJ relation is in 1NF but is not in 2NF. The nonprime attribute

Ename violates 2NF because of FD2, as do the nonprime attributes Pname and

Plocation because of FD3. Each of the functional dependencies FD2 and FD3

violates 2NF because Ename can be functionally determined by only Ssn, and both

Pname and Plocation can be functionally determined by only Pnumber. Attributes

Ssn and Pnumber are a part of the primary key {Ssn, Pnumber} of EMP_PROJ,

thus violating the 2NF test.

MCA Page 132

Therefore, the functional dependencies FD1, FD2, and FD3 in the follwing

Figure lead to the decomposition of EMP_PROJ into the three relation schemas

EP1, EP2, and EP3 each of which is in 2NF.
Figure: Normalizing into 2NF. Normalizing EMP_PROJ into 2NF relations.

Third Normal Form:

Third normal form (3NF) is based on the concept of transitive dependency. A

functional dependency X → Y in a relation schema R is a transitive dependency if

there exists a set of attributes Z in R that is neither a candidate key nor a subset of

any key of R, and both X → Z and Z → Y hold.

Definition: According to Codd’s original definition, a relation schema R is in 3NF

if it satisfies 2NF and no nonprime attribute of R is transitively

dependent on the primary key.

The relation schema EMP_DEPT is in 2NF, since no partial dependencies on a

key exist. However, EMP_DEPT is not in 3NF because of the transitive

dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. The

dependency Ssn → Dmgr_ssn is transitive through Dnumber in EMP_DEPT

because both the dependencies Ssn → Dnumber and Dnumber → Dmgr_ssn

hold.

MCA Page 133

We can normalize EMP_DEPT by decomposing it into the two 3NF relation

schemas ED1 and ED2 shown in the following Figure. A NATURAL JOIN

operation on ED1 and ED2 will recover the original relation EMP_DEPT without

generating spurious tuples.

Figure: Normalizing into 3NF. Normalizing EMP_DEPT into 3NF relations.

General Definitionsn of Second and Third Normal Forms

General Definition of Second Normal Form:

Definition. A relation schema R is in second normal form (2NF) if every

nonprime attribute A in R is not partially dependent on any key of R.

The test for 2NF involves testing for functional dependencies whose left-hand

side attributes are part of the primary key. If the primary key contains a single

attribute, the test need not be applied at all. Consider the relation schema LOTS

shown in Figure (a), which describes parcels of land for sale in various counties of

a state. Suppose that there are two candidate keys: Property_id# and
{County_name, Lot#}.

MCA Page 134

Figure (a): The LOTS relation with its functional dependencies FD1 through FD4

Based on the two candidate keys Property_id# and {County_name, Lot#}, the

functional dependencies FD1 and FD2 in Figure (a) hold. We choose Property_id#

as the primary key, so it is underlined in Figure (a). Suppose that the following two

additional functional dependencies hold in LOTS:

FD3: County_name → Tax_rate

FD4: Area → Price

Figure (b): Decomposing into the 2NF relations LOTS1 and LOTS2.

The LOTS relation schema violates the general definition of 2NF because

Tax_rate is partially dependent on the candidate key {County_name, Lot#}, due to

FD3. To normalize LOTS into 2NF, we decompose it into the two relations LOTS1

and LOTS2, shown in Figure (b). We construct LOTS1 by removing the attribute

Tax_rate that violates 2NF from LOTS and placing it with County_name (the left-

hand side of FD3 that causes the partial dependency) into another relation LOTS2.

Both LOTS1 and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is

carried over to LOTS1.

MCA Page 135

General Definition of Third Normal Form:

Definition. A relation schema R is in third normal form (3NF) if, whenever a

nontrivial functional dependency X → A holds in R, either (a) X is a superkey of R,

or (b) A is a prime attribute of R.

According to this definition, LOTS2 (Figure (b)) is in 3NF. However, FD4 in

LOTS1 violates 3NF because Area is not a superkey and Price is not a prime

attribute in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the

relation schemas LOTS1A and LOTS1B shown in Figure (c). We construct

LOTS1A by removing the attribute Price that violates 3NF from LOTS1 and

another relation LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

Figure (c): Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B.

Figure: Progressive normalization of LOTS into a 3NF design.

Alternative Definition: A relation schema R is in 3NF if every nonprime attribute

of R meets both of the following conditions:

■ It is fully functionally dependent on every key of R.

■ It is nontransitively dependent on every key of R.

MCA Page 136

BOYCE-CODD Normal Form (BCNF)

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF,

but it was found to be stricter than 3NF. That is, every relation in BCNF is also in

3NF; however, a relation in 3NF is not necessarily in BCNF.

BCNF is the advanced version of 3NF. A table is in BCNF if every functional

dependency X->Y, X is the super key of the table. For BCNF, the table should be

in 3NF, and for every FD. LHS is super key.

Definition: A relation schema R is in BCNF if whenever a nontrivial functional

dependency X → A holds in R, then X is a superkey of R.

Figure: BCNF normalization of LOTS1A with the functional dependency FD2

being lost in the decomposition.

In our example, FD5 violates BCNF in LOTS1A because Area is not a

superkey of LOTS1A. We can decompose LOTS1A into two BCNF relations

LOTS1AX and LOTS1AY, shown in Figure. This decomposition loses the

functional dependency FD2 because its attributes no longer coexist in the same

relation after decomposition.

MCA Page 137

Most relation schemas that are in 3NF are also in BCNF. Only if there exists

some f.d. X → A that holds in a relation schema R with X not being a superkey and

A being a prime attribute will R be in 3NF but not in BCNF. The relation schema

R shown in the following Figure illustrates the general case of such a relation.

Such an f.d. leads to potential redundancy of data, as we illustrated above in case of

FD5: Area → County_name.in LOTS1A relation.

Figure: A schematic relation with FDs; it is in 3NF, but not in BCNF due to the

f.d.C → B.

Algorithms for Relational Database Schema Design

Two algorithms for creating a relational decomposition from a universal relation.

The first algorithm decomposes a universal relation into dependencypreserving

3NF relations that also possess the nonadditive join property. The second algorithm

decomposes a universal relation schema into BCNF schemas that possess the

nonadditive join property.

1. Dependency-Preserving and Nonadditive (Lossless) Join Decomposition
into 3NF Schemas

By now we know that it is not possible to have all three of the following: (1)

guaranteed nonlossy (nonadditive) design, (2) guaranteed dependency preservation,

and (3) all relations in BCNF.

Now we give an algorithm where we achieve conditions 1 and 2 and only

guarantee 3NF. Algorithm 1 yields a decomposition D of R that does the following:

■ Preserves dependencies

■ Has the nonadditive join property

■ Is such that each resulting relation schema in the decomposition is in 3NF

MCA Page 138

Algorithm 1: Relational Synthesis into 3NF with Dependency Preservation and

Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the

attributes of R.

1. Find a minimal cover G for F.

2. For each left-hand-side X of a functional dependency that appears in G, create a

relation schema in D with attributes {X ∪ {A1} ∪ {A2} … ∪ {Ak} }, where X →

A1, X → A2, … , X → Ak are the only dependencies in G with X as left-hand side

(X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one more

relation schema in D that contains attributes that form a key of R.

4. Eliminate redundant relations from the resulting set of relations in the relational

database schema. A relation R is considered redundant if R is a projection of

another relation S in the schema; alternately, R is subsumed by S.

Example of Algorithm 1: Consider the following universal relation:

U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

Emp_ssn, Esal, and Ephone refer to the Social Security number, salary, and

phone number of the employee. Pno, Pname, and Plocation refer to the number,

name, and location of the project. Dno is the department number.

The following dependencies are present:

FD1: Emp_ssn → {Esal, Ephone, Dno}

FD2: Pno → { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the

universal relation. Hence F, the set of given FDs, includes {Emp_ssn → Esal,

Ephone, Dno; Pno → Pname, Plocation; Emp_ssn, Pno → Esal, Ephone, Dno,

Pname, Plocation}.

By applying the minimal cover Algorithm, in step 3 we see that Pno is an

extraneous attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is

extraneous in Emp_ssn, Pno → Pname, Plocation. Hence the minimal cover

consists of FD1 and FD2 only asfollows:

MCA Page 139

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

The second step of Algorithm produces relations R1 and R2 as:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U.

Hence, the resulting design contains:

R1 (Emp_ssn, Esal, Ephone, Dno)

R2 (Pno, Pname, Plocation)
R3 (Emp_ssn, Pno)

This design achieves both the desirable properties of dependency preservation

and nonadditive join.

2. Nonadditive Join Decomposition into BCNF Schemas

The next algorithm decomposes a universal relation schema R = {A1, A2, … , An}

into a decomposition D = {R1, R2, … , Rm} such that each Ri is in BCNF and the

decomposition D has the lossless join property with respect to F. Algorithm 2

utilizes property NJB and claim 2 (preservation of nonadditivity in successive

decompositions) to create a nonadditive join decomposition D = {R1, R2, … , Rm}

of a universal relation R based on a set of functional dependencies F, such that each

Ri in D is in BCNF.

Algorithm 2: Relational Decomposition into BCNF with Nonadditive Join

Property

Input: A universal relation R and a set of functional dependencies F on the

attributes of R.

1. Set D := {R} ;

2. While there is a relation schema Q in D that is not in BCNF do

{
choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);
} ;

MCA Page 140

Each time through the loop in Algorithm 2, we decompose one relation

schema Q that is not in BCNF into two relation schemas. At the end of the

algorithm, all relation schemas in D will be in BCNF. We illustrated the

application of this algorithm to the TEACH relation schema is decomposed into

TEACH1(Instructor, Student) and TEACH2(Instructor, Course) because the

dependency FD2 Instructor → Course violates BCNF.

Multivalued Dependency and Fourth Normal Form

Some relations have constraints that cannot be specified as functional

dependencies and hence are not in violation of BCNF. To address this situation, the

concept of multivalued dependency (MVD) was proposed and, based on this

dependency, the fourth normal form was defined.

Multivalued dependencies are a consequence of first normal form (1NF) ,

which disallows an attribute in a tuple to have a set of values. If more than one

multivalued attribute is present, the second option of normalizing the relation (see

Section 14.3.4) introduces a multivalued dependency. Informally, whenever two

independent 1:N relationships A:B and A:C are mixed in the same relation, R(A, B,

C), an MVD may arise.

Formal Definition of Multivalued Dependency

Definition: A multivalued dependency X → Y specified on relation schema R,

where X and Y are both subsets of R, specifies the following constraint on any

relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then

two tuples t3 and t4 should also exist in r with the following properties, where we

use Z to denote (R − (X ∪ Y)):

■ t3[X] = t4[X] = t1[X] = t2[X]

■ t3[Y] = t1[Y] and t4[Y] = t2[Y]

■ t3[Z] = t2[Z] and t4[Z] = t1[Z]

Whenever X →→ Y holds, we say that X multidetermines Y. Because of the

symmetry in the definition, whenever X →→ Y holds in R, so does X →→ Z.

Hence, X →→ Y implies X →→ Z and therefore it is sometimes written as X →→

Y|Z.

MCA Page 141

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b)

X ∪ Y = R. For example, the relation EMP_PROJECTS in (b) has the trivial MVD

Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD

Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial

MVD.

If we have a nontrivial MVD in a relation, we may have to repeat values

redundantly in the tuples. In the EMP relation of Figure (a), the values ‘X’ and ‘Y’

of Pname are repeated with each value of Dname. This redundancy is clearly

undesirable. However, the EMP schema is in BCNF because no functional

dependencies hold in EMP. Therefore, we need to define a fourth normal form that

is stronger than BCNF and disallows relation schemas such as EMP.

Fourth Normal Form:

Now present the definition of fourth normal form (4NF), which is violated

when a relation has undesirable multivalued dependencies and hence can be used to

identify and decompose such relations.

Definition: A relation schema R is in 4NF with respect to a set of dependencies F

if, for every nontrivial multivalued dependency X →→ Y in F+, X is

a superkey for R.

We can state the following points:

■ An all-key relation is always in BCNF since it has no FDs.

■ An all-key relation such as the EMP relation in Figure (a), which has no FDs but

has the MVD Ename →→ Pname | Dname, is not in 4NF.

■ A relation that is not in 4NF due to a nontrivial MVD must be decomposed to

convert it into a set of relations in 4NF.

■ The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is

not in 4NF consists of decomposing it so that each MVD is represented by a

separate relation where it becomes a trivial MVD. Consider the EMP relation in

Figure (a). EMP is not in 4NF because in the nontrivial MVDs Ename →→ Pname

and Ename →→ Dname, and Ename is not a superkey of EMP.

MCA Page 142

We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, shown

in Figure (b). Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF,

because the MVDs Ename →→ Pname in EMP_PROJECTS and Ename →→

Dname in EMP_DEPENDENTS are trivial MVDs. No other nontrivial MVDs hold

in either EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in these

relation schemas either.

Figure: (a) The EMP relation with two MVDs: Ename →→ Pname and Ename

→→ Dname. (b) Decomposing the EMP relation into two 4NF relations

EMP_PROJECTS and EMP_DEPENDENTS.

MCA Page 143

File Organization and Indexes

Introduction

Databases are stored physically as files of records, which are typically stored

on magnetic disks. The organization of databases in storage and the techniques for

accessing them efficiently using various algorithms, some of which require

auxiliary data structures called indexes. These structures are often referred to as

physical database file structures and are at the physical level of the threeschema

architecture.

The collection of data that makes up a computerized database must be stored

physically on some computer storage medium. The DBMS software can then

retrieve, update, and process this data as needed. Computer storage media form a

storage hierarchy that includes two main categories:

■ Primary storage: This category includes storage media that can be operated on

directly by the computer’s central processing unit (CPU), such as the computer’s

main memory and smaller but faster cache memories. Primary storage usually

provides fast access to data but is of limited storage capacity.

■ Secondary storage: The primary choice of storage medium for online storage of

enterprise databases has been magnetic disks. When used as a substitute for a disk

drive, such memory is called a solid-state drive (SSD).

■ Tertiary storage: Optical disks (CD-ROMs, DVDs, and other similar storage

media) and tapes are removable media used in today’s systems as offline storage

for archiving databases and hence come under the category called tertiary storage.

These devices usually have a larger capacity, cost less, and provide slower access

to data than do primary storage devices.

1. Memory Hierarchies and Storage Devices:

In a modern computer system, data resides and is transported throughout a

hierarchy of storage media. At the primary storage level, the memory hierarchy

includes, at the most expensive end, cache memory, which is a static RAM

(random access memory). Cache memory is typically used by the CPU to speed up

execution of program instructions. The next level of primary storage is DRAM

(dynamic RAM), which provides the main work area for the CPU for keeping

program instructions and data. It is popularly called main memory. The advantage

of DRAM is its low cost.

MCA Page 144

At the secondary and tertiary storage level, the hierarchy includes magnetic

disks; mass storage in the form of CD-ROM (compact disk–read-only memory)

and DVD (digital video disk or digital versatile disk) devices; and finally tapes at

the least expensive end of the hierarchy.

The storage capacity is measured in kilobytes (Kbyte or 1,000 bytes),

megabytes (MB or 1 million bytes), gigabytes (GB or 1 billion bytes), and even

terabytes (1,000 GB). The word petabyte (1,000 terabytes or 10**15 bytes) is now

becoming relevant in the context of very large repositories of data in physics,

astronomy, earth sciences, and other scientific applications.

Flash Memory: Between DRAM and magnetic disk storage, another form of

memory, flash memory, is becoming common, particularly because it is nonvolatile.

Flash memories are high-density, high-performance memories using EEPROM

(electrically erasable programmable read-only memory) technology. The advantage

of flash memory is the fast access speed; the disadvantage is that an entire block

must be erased and written over simultaneously. Flash memories come in two

types called NAND and NOR flash based on the type of logic circuits used.

Optical Drives: The most popular form of optical removable storage is CDs

(compact disks) and DVDs. CDs have a 700-MB capacity whereas DVDs have

capacities ranging from 4.5 to 15 GB. CD-ROM(compact disk – read only memory)

disks store data optically and are read by a laser.

Magnetic Tapes: Finally, magnetic tapes are used for archiving and backup

storage of data. Tape jukeboxes—which contain a bank of tapes that are

catalogued and can be automatically loaded onto tape drives—are becoming

popular as tertiary storage to hold terabytes of data.

2. Storage Organization of Databases

Databases typically store large amounts of data that must persist over long

periods of time, and hence the data is often referred to as persistent data. Parts of

this data are accessed and processed repeatedly during the storage period. This

contrasts with the notion of transient data, which persists for only a limited time

during program execution.

MCA Page 145

Most databases are stored permanently (or persistently) on magnetic disk

secondary storage, for the following reasons:

■ Generally, databases are too large to fit entirely in main memory.

■ The circumstances that cause permanent loss of stored data arise less frequently

for disk secondary storage than for primary storage. Hence, we refer to disk—and

other secondary storage devices—as nonvolatile storage, whereas main memory

is often called volatile storage.

■ The cost of storage per unit of data is an order of magnitude less for disk

secondary storage than for primary storage.

Secondary Storage Devices

1. Hardware Description of Disk Devices

Magnetic disks are used for storing large amounts of data. The device that

holds the disks is referred to as a hard disk drive, or HDD. The most basic unit of

data on the disk is a single bit of information. The area represent a bit value of

either 0 (zero) or 1 (one). To code information, bits are grouped into bytes (or

characters). Byte sizes are typically 4 to 8 bits, depending on the computer and the

device; 8 bits is the most common. The capacity of a disk is the number of bytes it

can store, which is usually very large.

All disks are made of magnetic material shaped as a thin circular disk, as

shown in Figure (a), and protected by a plastic or acrylic cover. A disk is single-

sided if it stores information on one of its surfaces only and double-sided if both

surfaces are used.

To increase storage capacity, disks are assembled into a disk pack, as shown in

Figure (b), which may include many disks and therefore many surfaces. The two

most common form factors are 3.5 and 2.5 inch diameter. Information is stored on

a disk surface in concentric circles of small width,5 each having a distinct diameter.

Each circle is called a track. In disk packs, tracks with the same diameter on the

various surfaces are called a cylinder because of the shape they would form if

connected in space.

MCA Page 146

Figure: (a) A single-sided disk with read/write hardware. (b) A disk pack with

read/write hardware.

A track usually contains a large amount of information, it is divided into

smaller blocks or sectors. The division of a track into sectors is hard-coded on the

disk surface and cannot be changed. One type of sector organization, as shown in

the following Figure (1), calls a portion of a track that subtends a fixed angle at the

center a sector. Several other sector organizations are possible, one of which is to

have the sectors subtend smaller angles at the center as one moves away, thus

maintaining a uniform density of recording, as shown in the following Figure (2).

MCA Page 147

Figure 1: Sectors subtending a fixed angle.

Figure 2: Sectors maintaining a uniform recording density.

2. Making Data Access More Efficient on Disk

Some of the commonly used techniques to make accessing data more efficient

on HDDs:

1. Buffering of data: The electromechanical device such as an HDD, which is

inherently slower, buffering of data is done in memory so that new data can be

held in a buffer while old data is processed by an application.

2. Proper organization of data on disk: Given the structure and organization of

data on disk, it is advantageous to keep related data on contiguous blocks; when

multiple cylinders are needed by a relation, contiguous cylinders should be

used.

3. Reading data ahead of request: To minimize seek times, whenever a block is

read into the buffer, blocks from the rest of the track can also be read even

though they may not have been requested yet.

MCA Page 148

3. SolidState Device (SSD) Storage

This type of storage is sometimes known as flash storage because it is based

on the flash memory technology. The recent trend is to use flash memories as an

intermediate layer between main memory and secondary rotating storage in the

form of magnetic disks (HDDs). Since they resemble disks in terms of the ability to

store data in secondary storage without the need for continuous power supply, they

are called solid-state disks or solid-state drives (SSDs). SSDs in general terms

first and then comment on their use at the enterprise level, where they are

sometimes referred to as enterprise flash drives (EFDs).

The main component of an SSD is a controller and a set of interconnected

flash memory cards. Use of NAND flash memory is most common. In addition to

flash memory, DRAM-based SSDs are also available. They are costlier than flash

memory. As an example of an enterprise level SSD, we can consider CISCO’s

UCS (Unified Computing System) Invicta series SSDs.

4. Magnetic Tape Storage Devices

Disks are random access secondary storage devices because an arbitrary disk

block may be accessed at random once we specify its address. Magnetic tapes are

sequential access devices; to access the nth block on tape, first we must scan the

preceding n – 1 blocks. Data is stored on reels of high-capacity magnetic tape,

somewhat similar to audiotapes or videotapes. A tape drive is required to read the

data from or write the data to a tape reel. Usually, each group of bits that forms a

byte is stored across the tape, and the bytes themselves are stored consecutively on

the tape. A read/write head is used to read or write data on tape. Data records on

tape are also stored in blocks.

The main characteristic of a tape is its requirement that we access the data

blocks in sequential order. To get to a block in the middle of a reel of tape, the

tape is mounted and then scanned until the required block gets under the read/write

head.

Tapes serve a very important function— backing up the database. One reason

for backup is to keep copies of disk files in case the data is lost due to a disk crash,

which can happen if the disk read/write head touches the disk surface because of

mechanical malfunction. For this reason, disk files are copied periodically to tape.

MCA Page 149

Buffering of Blocks

When several blocks need to be transferred from disk to main memory and all

the block addresses are known, several buffers can be reserved in main memory to

speed up the transfer. While one buffer is being read or written, the CPU can

process data in the other buffer because an independent disk I/O processor

(controller) exists that, once started, can proceed to transfer a data block between

memory and disk independent of and in parallel to CPU processing.

Figure 1 illustrates how two processes can proceed in parallel. Processes A

and B are running concurrently in an interleaved fashion, whereas processes C

and D are running concurrently in a parallel fashion. When a single CPU controls

multiple processes, parallel execution is not possible. However, the processes can

still run concurrently in an interleaved way. Buffering is most useful when

processes can run concurrently in a parallel fashion.

Figure 1: Interleaved concurrency versus parallel execution.

Figure 2 illustrates how reading and processing can proceed in parallel when

the time required to process a disk block in memory is less than the time required

to read the next block and fill a buffer. The CPU can start processing a block once

its transfer to main memory is completed; at the same time, the disk I/O processor

can be reading and transferring the next block into a different buffer. This

technique is called double buffering and can also be used to read a continuous

MCA Page 150

stream of blocks from disk to memory. Double buffering permits continuous

reading or writing of data on consecutive disk blocks.
Figure 2: Use of two buffers, A and B, for reading from disk.

1. Buffer Management

Buffer management and Replacement Strategies: For most large database files

containing millions of pages, it is not possible to bring all of the data into main

memory at the same time. The actual management of buffers and decisions about

what buffers to use to place a newly read page in the buffer is a more complex

process. We use the term buffer to refer to a part of main memory that is available

to receive blocks or pages of data from disk.

Buffer manager is a software component of a DBMS that responds to requests

for data and decides what buffer to use and what pages to replace in the buffer to

accommodate the newly requested blocks. The buffer manager views the available

main memory storage as a buffer pool, which has a collection of pages.

There are two kinds of buffer managers; the first kind controls the main memory

directly, as in most RDBMSs. The second kind allocates buffers in virtual memory,

which allows the control to transfer to the operating system (OS).

The overall goal of the buffer manager is twofold: (1) to maximize the

probability that the requested page is found in main memory, and (2) in

case of reading a new disk block from disk, to find a page to replace that

will cause the least harm in the sense that it will not be required shortly

again.

MCA Page 151

2. Buffer Replacement Strategies:

The following are some popular replacement strategies that are similar to those

used elsewhere, such as in operating systems:

1. Least recently used (LRU): The strategy here is to throw out that page that

has not been used (read or written) for the longest time. This requires the

buffer manager to maintain a table where it records the time every time a

page in a buffer is accessed. Whereas this constitutes an overhead, the

strategy works well because for a buffer that is not used for a long time, its

chance of being accessed again is small.

2. Clock policy: This is a round-robin variant of the LRU policy. Imagine the

buffers are arranged like a circle similar to a clock. Each buffer has a flag

with a 0 or 1 value. Buffers with a 0 are vulnerable and may be used for

replacement and their contents read back to disk. Buffers with a 1 are not

vulnerable. When a block is read into a buffer, the flag is set to 1. When the

buffer is accessed, the flag is set to 1 also. The clock hand is positioned on a

“current buffer.” When the buffer manager needs a buffer for a new block, it

rotates the hand until it finds a buffer with a 0 and uses that to read and place

the new block.

3. First-in-first-out (FIFO): Under this policy, when a buffer is required, the

one that has been occupied the longest by a page is used for replacement.

Under this policy, the manager notes the time each page gets loaded into a

buffer. Although FIFO needs less maintenance than LRU, it can work

counter to desirable behavior. A block that remains in the buffer for a long

time because it is needed continuously.

LRU and clock policies are not the best policies for database applications if they

require sequential scans of data and the file cannot fit into the buffer at one time.

MCA Page 152

Placing File Records on Disk

• Records and Record Types

Data is usually stored in the form of records. Each record consists of a

collection of related data values or items, where each value is formed of one or

more bytes and corresponds to a particular field of the record. Records usually

describe entities and their attributes. For example, an EMPLOYEE record

represents an employee entity, and each field value in the record specifies some

attribute of that employee, such as Name, Birth_date, Salary, or Supervisor. A

collection of field names and their corresponding data types constitutes a record

type or record format definition. A data type, associated with each field,

specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in

programming. These include numeric (integer, long integer, or floating point),

string of characters (fixed-length or varying), Boolean (having 0 and 1 or TRUE

and FALSE values only), and sometimes specially coded date and time data types.

An integer may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a

Boolean 1 byte, a date 10 bytes (assuming a format of YYYY-MM-DD), and a

fixed-length string of k characters k bytes. For example, an EMPLOYEE record

type may be defined—using the C programming language notation—as the

following structure:

struct employee

{

char name[30];

char ssn[9];

int salary;

int job_code;
char department[20];

} ;

• Files, Fixed-Length Records, and Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the

same record type. If every record in the file has exactly the same size (in bytes), the

file is said to be made up of fixed-length records. If different records in the file

have different sizes, the file is said to be made up of variable-length records. A

file may have variable-length records for several reasons:

MCA Page 153

■ The file records are of the same record type, but one or more of the fields are of

varying size (variable-length fields). For example, the Name field of EMPLOYEE

can be a variable-length field.

■ The file records are of the same record type, but one or more of the fields may

have multiple values for individual records; such a field is called a repeating field

and a group of values for the field is often called a repeating group.

■ The file records are of the same record type, but one or more of the fields are

optional; that is, they may have values for some but not all of the file records

(optional fields).

■ The file contains records of different record types and hence of varying size

(mixed file). This would occur if related records of different types were clustered

(placed together) on disk blocks; for example, the GRADE_REPORT records of a

particular student may be placed following that STUDENT’s record.

Figure: Three record storage formats. (a) A fixed-length record with six fields and

size of 71 bytes. (b) A record with two variable-length fields and three fixed-length

fields. (c) A variable-field record with three types of separator characters.

MCA Page 154

• Record Blocking and Spanned versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the

unit of data transfer between disk and memory. When the block size is larger than

the record size, each block will contain numerous records, although some files may

have unusually large records that cannot fit in one block.

To utilize the unused space, we can store part of a record on one block and the

rest on another. A pointer at the end of the first block points to the block

containing the remainder of the record in case it is not the next consecutive block

on disk. This organization is called spanned because records can span more than

one block. Whenever a record is larger than a block, we must use a spanned

organization. If records are not allowed to cross block boundaries, the organization

is called unspanned.

Figure: Types of record organization. (a) Unspanned. (b) Spanned.

• Allocating File Blocks on Disk

There are several standard techniques for allocating the blocks of a file on

disk. In contiguous allocation, the file blocks are allocated to consecutive disk

blocks. This makes reading the whole file very fast using double buffering, but it

makes expanding the file difficult. In linked allocation, each file block contains a

pointer to the next file block. This makes it easy to expand the file but makes it

slow to read the whole file. A combination of the two allocates clusters of

consecutive disk blocks, and the clusters are linked. Clusters are sometimes called

file segments or extents. Another possibility is to use indexed allocation, where

one or more index blocks contain pointers to the actual file blocks. It is also

common to use combinations of these techniques.

MCA Page 155

• File Headers

A file header or file descriptor contains information about a file that is needed

by the system programs that access the file records. The header includes

information to determine the disk addresses of the file blocks as well as to record

format descriptions, which may include field lengths and the order of fields within

a record for fixed-length unspanned records and field type codes, separator

characters, and record type codes for variable-length records.

Operations on Files

Operations on files are usually grouped into retrieval operations and update

operations. The former do not change any data in the file, but only locate certain

records so that their field values can be examined and processed. The latter change

the file by insertion or deletion of records or by modification of field values. In

either case, we may have to select one or more records for retrieval, deletion, or

modification based on a selection condition (or filtering condition), which

specifies criteria that the desired record or records must satisfy.

Consider an EMPLOYEE file with fields Name, Ssn, Salary, Job_code, and

Department. A simple selection condition may involve an equality comparison on

some field value—for example, (Ssn = ‘123456789’) or (Department = ‘Research’).

More complex conditions can involve other types of comparison operators, such

as > or ≥ ; an example is (Salary ≥ 30000). The general case is to have an arbitrary

Boolean expression on the fields of the file as the selection condition.

Search operations on files are generally based on simple selection conditions.

A complex condition must be decomposed by the DBMS (or the programmer) to

extract a simple condition that can be used to locate the records on disk. For

example, we may extract the simple condition (Department = ‘Research’) from the

complex condition ((Salary ≥ 30000) AND (Department = ‘Research’)); each

record satisfying (Department = ‘Research’) is located and then tested to see if it

also satisfies (Salary ≥ 30000).

Actual operations for locating and accessing file records vary from system to

system. In the following list, we present a set of representative operations.

Typically, high-level programs, such as DBMS software programs, access records

by using these commands, so we sometimes refer to program variables in the

following descriptions:

MCA Page 156

• Open: Prepares the file for reading or writing. Allocates appropriate buffers

(typically at least two) to hold file blocks from disk, and retrieves the file

header. Sets the file pointer to the beginning of the file.

• Reset. Sets the file pointer of an open file to the beginning of the file.

• Find (or Locate): Searches for the first record that satisfies a search

condition. Transfers the block containing that record into a main memory

buffer (if it is not already there). The file pointer points to the record in the

buffer and it becomes the current record. Sometimes, different verbs are used

to indicate whether the located record is to be retrieved or updated.

• Read (or Get): Copies the current record from the buffer to a program

variable in the user program. This command may also advance the current

record pointer to the next record in the file, which may necessitate reading

the next file block from disk.

• FindNext: Searches for the next record in the file that satisfies the search

condition. Transfers the block containing that record into a main memory

buffer (if it is not already there). The record is located in the buffer and

becomes the current record.

• Delete: Deletes the current record and (eventually) updates the file on disk to

reflect the deletion.

• Modify: Modifies some field values for the current record and (eventually)

updates the file on disk to reflect the modification.

• Insert. Inserts a new record in the file by locating the block where the record

is to be inserted, transferring that block into a main memory buffer (if it is

not already there), writing the record into the buffer, and (eventually) writing

the buffer to disk to reflect the insertion.

• Close: Completes the file access by releasing the buffers and performing

any other needed cleanup operations.

In database systems, additional set-at-a-time higher-level operations may be

applied to a file. Examples of these are as follows:

• FindAll. Locates all the records in the file that satisfy a search condition.

• Find (or Locate) n. Searches for the first record that satisfies a search

condition and then continues to locate the next n − 1 records satisfying the

same condition. Transfers the blocks containing the n records to the main

memory buffer (if not already there).

• FindOrdered. Retrieves all the records in the file in some specified order.

MCA Page 157

• Reorganize. Starts the reorganization process. As we shall see, some file

organizations require periodic reorganization. An example is to reorder the

file records by sorting them on a specified field.

At this point, it is worthwhile to note the difference between the terms file

organization and access method. A file organization refers to the organization of

the data of a file into records, blocks, and access structures; this includes the way

records and blocks are placed on the storage medium and interlinked.

Usually, we expect to use some search conditions more than others. Some files

may be static, meaning that update operations are rarely performed; other, more

dynamic files may change frequently, so update operations are constantly applied

to them.

Hashing Techniques

Another type of primary file organization is based on hashing, which provides

very fast access to records under certain search conditions. This organization is

usually called a hash file. The search condition must be an equality condition on a

single field, called the hash field. In most cases, the hash field is also a key field of

the file, in which case it is called the hash key. The idea behind hashing is to

provide a function h, called a hash function or randomizing function.

Hashing is also used as an internal search structure within a program whenever

a group of records is accessed exclusively by using the value of one field.

1. Internal Hashing

For internal files, hashing is typically implemented as a hash table through the

use of an array of records. Suppose that the array index range is from 0 to M – 1, as

shown in Figure 16.8(a); then we have M slots whose addresses correspond to the

array indexes. We choose a hash function that transforms the hash field value into

an integer between 0 and M − 1.

MCA Page 158

Figure: Array of M positions for use in internal hashing.

Other hashing functions can be used. One technique, called folding, involves

applying an arithmetic function such as addition or a logical function such as

exclusive or to different portions of the hash field value to calculate the hash

address. Another technique involves picking some digits of the hash field value—

for instance, the third, fifth, and eighth digits—to form the hash address.

A collision occurs when the hash field value of a record that is being inserted

hashes to an address that already contains a different record. In this situation, we

must insert the new record in some other position, since its hash address is

occupied. The process of finding another position is called collision resolution.

There are numerous methods for collision resolution, including the following:

■ Open addressing: Proceeding from the occupied position specified by the hash

address, the program checks the subsequent positions in order until an unused

(empty) position is found.

■ Chaining: For this method, various overflow locations are kept, usually by

extending the array with a number of overflow positions. Additionally, a pointer

field is added to each record location. A collision is resolved by placing the new

record in an unused overflow location.

■ Multiple hashing: The program applies a second hash function if the first results

in a collision. If another collision results, the program uses open addressing or

applies a third hash function and then uses open addressing if necessary.

MCA Page 159

2. External Hashing for Disk Files

Hashing for disk files is called external hashing. To suit the characteristics

of disk storage, the target address space is made of buckets, each of which holds

multiple records. A bucket is either one disk block or a cluster of contiguous disk

blocks. The hashing function maps a key into a relative bucket number rather than

assigning an absolute block address to the bucket. A table maintained in the file

header converts the bucket number into the corresponding disk block address, as

illustrated in Figure.

Figure: Matching bucket numbers to disk block addresses

The collision problem is less severe with buckets, because as many records as

will fit in a bucket can hash to the same bucket without causing problems. We can

use a variation of chaining in which a pointer is maintained in each bucket to a

linked list of overflow records for the bucket, as shown in Figure. The pointers in

the linked list should be record pointers, which include both a block address and a

relative record position within the block.

MCA Page 160

Figure: Handling overflow for buckets by chaining.

3. Hashing Techniques That Allow Dynamic File Expansion

A major drawback of the static hashing scheme is that the hash address space

is fixed. Hence, it is difficult to expand or shrink the file dynamically. There are

three schemes to remedy this situation. The first scheme—extendible hashing—

stores an access structure in addition to the file. The second technique, called

linear hashing, does not require additional access structures. Another scheme,

called dynamic hashing, uses an access structure based on binary tree data

structures.

Extendible Hashing: In extendible hashing, proposed by Fagin (1979), a type of

directory—an array of 2d bucket addresses—is maintained, where d is called the

global depth of the directory. A local depth d′—stored with each bucket—specifies

MCA Page 161

the number of bits on which the bucket contents are based. Figure shows a

directory with global depth d = 3.

Figure: Structure of the extendible hashing scheme.

The main advantage of extendible hashing that makes it attractive is that the

performance of the file does not degrade as the file grows, as opposed to static

external hashing,

MCA Page 162

Dynamic Hashing: A precursor to extendible hashing was dynamic hashing

proposed by Larson (1978), in which the addresses of the buckets were either the n

high-order bits or n − 1 high-order bits, depending on the total number of keys

belonging to the respective bucket. Dynamic hashing maintains a tree-structured

directory with two types of nodes:

■ Internal nodes that have two pointers—the left pointer corresponding to the 0 bit

(in the hashed address) and a right pointer corresponding to the 1 bit.

■ Leaf nodes—these hold a pointer to the actual bucket with records.

An example of the dynamic hashing appears in Figure 16.12. Four buckets are

shown (“000”, “001”, “110”, and “111”) with high-order 3-bit addresses

(corresponding to the global depth of 3), and two buckets (“01” and “10”) are

shown with high-order 2-bit addresses (corresponding to the local depth of 2). The

latter two are the result of collapsing the “010” and “011” into “01” and collapsing

“100” and “101” into “10”.

MCA Page 163

Linear Hashing: The idea behind linear hashing, proposed by Litwin (1980), is to

allow a hash file to expand and shrink its number of buckets dynamically without

needing a directory. Suppose that the file starts with M buckets numbered 0, 1, … ,

M − 1 and uses the mod hash function h(K) = K mod M; this hash function is

called the initial hash function hi.

When a collision leads to an overflow record in any file bucket, the first bucket

in the file—bucket 0—is split into two buckets: the original bucket 0 and a new

bucket M at the end of the file. The records originally in bucket 0 are distributed

between the two buckets based on a different hashing function hi+1(K) = K mod

2M.

The main advantages of linear hashing are that it maintains the load factor fairly

constantly while the file grows and shrinks, and it does not require a directory.

Algorithm: The Search Procedure for Linear Hashing

if n = 0

then m ← hj (K) (*m is the hash value of record with hash key K*)

else begin

m ← hj (K);

if m < n then m ← hj+1 (K)

end;

search the bucket whose hash value is m (and its overflow, if any);

Parallelizing Disk Access Using RAID Technology

A major advance in secondary storage technology is represented by the

development of RAID, which originally stood for redundant arrays of inexpensive

disks. More recently, the I in RAID is said to stand for independent. The RAID

idea received a very positive industry endorsement and has been developed into an

elaborate set of alternative RAID architectures (RAID levels 0 through 6). The

main goal of RAID is to even out the widely different rates of performance

improvement of disks against those in memory and microprocessors.

MCA Page 164

The natural solution is a large array of small independent disks acting as a

single higher performance logical disk. A concept called data striping is used,

which utilizes parallelism to improve disk performance. Data striping distributes

data transparently over multiple disks to make them appear as a single large, fast

disk.

In bit-level striping, a byte is split and individual bits are stored on

independent disks. Figure (a) illustrates bit-striping across four disks where the bits

(0, 4) are assigned to disk 0, bits (1, 5) to disk 1, and so on.

Block-level striping stripes blocks across disks. It treats the array of disks as if

it is one disk. Blocks are logically numbered from 0 in sequence. Disks in an m-

disk array are numbered 0 to m – 1. With striping, block j goes to disk (j mod m).

Figure (b) illustrates block striping with four disks (m = 4).

Figure: Striping of data across multiple disks. (a) Bit-level striping across four

disks. (b) Block-level striping across four disks.

1. Improving Reliability with RAID

One technique for introducing redundancy is called mirroring or shadowing.

Data is written redundantly to two identical physical disks that are treated as one

logical disk. When data is read, it can be retrieved from the disk with shorter

MCA Page 165

queuing, seek, and rotational delays. If a disk fails, the other disk is used until the

first is repaired.

Another solution to the problem of reliability is to store extra information that

is not normally needed but that can be used to reconstruct the lost information in

case of disk failure. The incorporation of redundancy must consider two problems:

selecting a technique for computing the redundant information, and selecting a

method of distributing the redundant information across the disk array.

The first problem is addressed by using error-correcting codes involving parity

bits, or specialized codes such as Hamming codes. For the second problem, the two

major approaches are either to store the redundant information on a small number

of disks or to distribute it uniformly across all disks. The latter results in better load

balancing. The different levels of RAID choose a combination of these options to

implement redundancy and improve reliability.

2. Improving Performance with RAID

The disk arrays employ the technique of data striping to achieve higher

transfer rates. Note that data can be read or written only one block at a time, so a

typical transfer contains 512 to 8,192 bytes. The bit-level data striping consists

of splitting a byte of data and writing bit j to the jth disk. With 8-bit bytes, eight

physical disks may be considered as one logical disk with an eightfold increase in

the data transfer rate.

The granularity of data interleaving can be higher than a bit; for example,

blocks of a file can be striped across disks, giving rise to block-level striping.

With block-level striping, multiple independent requests that access single blocks

can be serviced in parallel by separate disks, thus decreasing the queuing time of

I/O requests.

3. RAID Organizations and Levels

Different RAID organizations were defined based on different combinations of

the two factors of granularity of data interleaving (striping) and pattern used to

compute redundant information. In the initial proposal, levels 1 through 5 of RAID

were proposed, and two additional levels—0 and 6—were added later.

RAID level 0 uses data striping, has no redundant data, and hence has the best

write performance since updates do not have to be duplicated. It splits data evenly

across two or more disks.

MCA Page 166

RAID level 1, which uses mirrored disks. In the latter, performance improvement

is possible by scheduling a read request to the disk with shortest expected seek and

rotational delay.

RAID level 2 uses memory-style redundancy by using Hamming codes, which

contain parity bits for distinct overlapping subsets of components.

RAID level 3 uses a single parity disk relying on the disk controller to figure out

which disk has failed.

RAID Levels 4 and 5 use block-level data striping, with level 5 distributing data

and parity information across all disks. Figure (b) shows an illustration of RAID

level 5, where parity is shown with subscript p.

Finally, RAID level 6 applies the so-called P + Q redundancy scheme using Reed-

Soloman codes to protect against up to two disk failures by using just two

redundant disks.

Figure: Some popular levels of RAID. (a) RAID level 1: Mirroring of data on two

disks. (b) RAID level 5: Striping of data with distributed parity across four disks.

MCA Page 167

Indexing Structures for Files

Types of Single-Level Ordered Indexes

For a file with a given record structure consisting of several fields (or

attributes), an index access structure is usually defined on a single field of a file,

called an indexing field (or indexing attribute). The values in the index are

ordered so that we can do a binary search on the index.

There are several types of ordered indexes. A primary index is specified on

the ordering key field of an ordered file of records. An ordering key field is used to

physically order the file records on disk, and every record has a unique value for

that field. If the ordering field is not a key field—that is, if numerous records in the

file can have the same value for the ordering field— another type of index, called a

clustering index, can be used. The data file is called a clustered file in this latter

case. A third type of index, called a secondary index, can be specified on any

nonordering field of a file.

1. Primary Indexes

A primary index is an ordered file whose records are of fixed length with two

fields, and it acts like an access structure to efficiently search for and access the

data records in a data file. The first field is of the same data type as the ordering

key field called the primary key of the data file, and the second field is a pointer to

a disk block (a block address). There is one index entry (or index record) in the

index file for each block in the data file. Each index entry has the value of the

primary key field for the first record in a block and a pointer to that block as its two

field values.

Figure 17.1 illustrates this primary index. The total number of entries in the

index is the same as the number of disk blocks in the ordered data file. The first

record in each block of the data file is called the anchor record of the block, or

simply the block anchor.

Indexes can also be characterized as dense or sparse. A dense index has an

index entry for every search key value (and hence every record) in the data file. A

sparse (or nondense) index, on the other hand, has index entries for only some of

the search values. A sparse index has fewer entries than the number of records in

the file.

MCA Page 168

MCA Page 169

A major problem with a primary index—as with any ordered file—is insertion

and deletion of records. With a primary index, the problem is compounded because

if we attempt to insert a record in its correct position in the data file, we must not

only move records to make space for the new record but also change some index

entries, since moving records will change the anchor records of some blocks.

2. Clustering Indexes

If file records are physically ordered on a nonkey field—which does not have a

distinct value for each record—that field is called the clustering field and the data

file is called a clustered file. We can create a different type of index, called a

clustering index, to speed up retrieval of all the records that have the same value

for the clustering field. This differs from a primary index, which requires that the

ordering field of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of

the same type as the clustering field of the data file, and the second field is a disk

block pointer. There is one entry in the clustering index for each distinct value of

the clustering field, and it contains the value and a pointer to the first block in the

data file that has a record with that value for its clustering field. Figure 17.2 shows

an example.

Notice that record insertion and deletion still cause problems because the data

records are physically ordered. To alleviate the problem of insertion, it is common

to reserve a whole block for each value of the clustering field; all records with that

value are placed in the block. This makes insertion and deletion relatively

straightforward. Figure 17.3 shows this scheme.

MCA Page 170

MCA Page 171

MCA Page 172

3. Secondary Indexes

A secondary index provides a secondary means of accessing a data file for

which some primary access already exists. The data file records could be ordered,

unordered, or hashed. The secondary index may be created on a field that is a

candidate key and has a unique value in every record, or on a nonkey field with

duplicate values. The index is again an ordered file with two fields. The first field

is of the same data type as some nonordering field of the data file that is an

indexing field. The second field is either a block pointer or a record pointer. Many

secondary indexes can be created for the same file.

First we consider a secondary index access structure on a key (unique) field

that has a distinct value for every record. Such a field is sometimes called a

secondary key. A secondary index usually needs more storage space and longer

search time than does a primary index, because of its larger number of entries.

Figure 17.4 illustrates a secondary index in which the pointers P(i) in the index

entries are block pointers, not record pointers. Once the appropriate disk block is

transferred to a main memory buffer, a search for the desired record within the

block can be carried out.

Notice that a secondary index provides a logical ordering on the records by

the indexing field. If we access the records in order of the entries in the secondary

index, we get them in order of the indexing field. The primary and clustering

indexes assume that the field used for physical ordering of records in the file is

the same as the indexing field.

If some value K(i) occurs in too many records, so that their record pointers

cannot fit in a single disk block, a cluster or linked list of blocks is used. This

technique is illustrated in Figure 17.5.

MCA Page 173

MCA Page 174

MCA Page 175

Multilevel Indexes

The indexing schemes we have described thus far involve an ordered index

file. A multilevel index considers the index file, which we will now refer to as the

first (or base) level of a multilevel index, as an ordered file with a distinct value for

each K(i). Therefore, by considering the first-level index file as a sorted data file,

we can create a primary index for the first level; this index to the first level is

called the second level of the multilevel index. Because the second level is a

primary index, we can use block anchors so that the second level has one entry for

each block of the first level. The blocking factor bfri for the second level—and for

all subsequent levels—is the same as that for the first-level index because all index

entries are the same size; each has one field value and one block address. If the first

level has r1 entries, and the blocking factor—which is also the fan-out—for the

index is bfri = fo, then the first level needs [(r1/fo)] blocks, which is therefore the

number of entries r2 needed at the second level of the index.

We can repeat this process for the second level. The third level, which is a

primary index for the second level, has an entry for each second-level block, so the

number of third-level entries is r3 = [(r2/fo)].

Notice that we require a second level only if the first level needs more than one

block of disk storage, and, similarly, we require a third level only if the second

level needs more than one block. We can repeat the preceding process until all the

entries of some index level t fit in a single block. This block at the tth level is

called the top index level.

Hence, a multilevel index with r1 first-level entries will have approximately t

levels, where t = [(logfo(r1))]. When searching the index, a single disk block is

retrieved at each level. Hence, t disk blocks are accessed for an index search,

where t is the number of index levels.

The multilevel scheme described here can be used on any type of index—

whether it is primary, clustering, or secondary—as long as the first-level index has

distinct values for K(i) and fixed-length entries. Figure 17.6 shows a multilevel

index built over a primary index.

MCA Page 176

MCA Page 177

A common file organization used in business data processing is an ordered file

with a multilevel primary index on its ordering key field. Such an organization is

called an indexed sequential file and was used in a large number of early IBM

systems.

Algorithm:. Searching a Nondense Multilevel Primary Index with t Levels

(*We assume the index entry to be a block anchor that is the first key per block*)

p ← address of top-level block of index;
for j ← t step − 1 to 1 do

begin

read the index block (at jth index level) whose address is p;

search block p for entry i such that Kj (i) ≤ K < Kj (i + 1)
(* if Kj (i)

is the last entry in the block, it is sufficient to satisfy Kj (i) ≤ K *);

p ← Pj (i) (* picks appropriate pointer at jth index level *)
end;

read the data file block whose address is p;

search block p for record with key = K;

A multilevel index reduces the number of blocks accessed when searching for

a record, given its indexing field value. We are still faced with the problems of

dealing with index insertions and deletions, because all index levels are physically

ordered files. To retain the benefits of using multilevel indexing while reducing

index insertion and deletion problems, designers adopted a multilevel index called

a dynamic multilevel index that leaves some space in each of its blocks for

inserting new entries and uses appropriate insertion/deletion algorithms for creating

and deleting new index blocks.

MCA Page 178

Dynamic Multilevel Indexes Using B-Trees and B+-Trees

B-trees and B+-trees are special cases of the well-known search data structure

known as a tree. A tree is formed of nodes. Each node in the tree, except for a

special node called the root, has one parent node and zero or more child nodes.

The root node has no parent. A node that does not have any child nodes is called a

leaf node; a nonleaf node is called an internal node. The level of a node is always

one more than the level of its parent, with the level of the root node being zero.

A subtree of a node consists of that node and all its descendant nodes—its

child nodes, the child nodes of its child nodes, and so on. A precise recursive

definition of a subtree is that it consists of a node n and the subtrees of all the child

nodes of n. Figure illustrates a tree data structure. In this figure the root node is A,

and its child nodes are B, C, and D. Nodes E, J, C, G, H, and K are leaf nodes.

Since the leaf nodes are at different levels of the tree, this tree is called unbalanced.

Figure:

1. Search Trees and B-Trees:

A search tree is a special type of tree that is used to guide the search for a record,

given the value of one of the record’s fields.

MCA Page 179

Search Trees:

A search tree is slightly different from a multilevel index. A search tree of

order p is a tree such that each node contains at most p − 1 search values and p

pointers in the order <P1,K1,P2,K2,…,Pq-1,Kq-1,Pq>, where q ≤ p. Each Pi is a

pointer to a child node (or a NULL pointer), and each Ki is a search value from

some ordered set of values. All search values are assumed to be unique. Figure 1

illustrates a node in a search tree. Two constraints must hold at all times on the

search tree:

1. Within each node, K1 < K2 < … < Kq−1.

2. For all values X in the subtree pointed at by Pi, we have Ki−1 < X < Ki for

1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q (see Figure 1).

Whenever we search for a value X, we follow the appropriate pointer Pi

according to the formulas in condition 2 above. Figure 2 illustrates a search tree of

order p = 3 and integer search values. Notice that some of the pointers Pi in a node

may be NULL pointers.

Figure 1: A node in a search tree with pointers to subtrees below it.

Figure 2: A search tree of order p = 3.

MCA Page 180

B-Trees.

The B-tree has additional constraints that ensure that the tree is always

balanced and that the space wasted by deletion, if any, never becomes excessive.

The algorithms for insertion and deletion, though, become more complex in order

to maintain these constraints. More formally, a B-tree of order p, when used as an

access structure on a key field to search for records in a data file, can be defined as

follows:

1. Each internal node in the B-tree (Figure (a)) is of the form

<P1, <K1,Pr1>, P2, <K2,Pr2>,… , <Kq-1,Prq-1> , Pq>

where q ≤ p. Each Pi is a tree pointer—a pointer to another node in the B-

tree. Each Pri is a data pointer—a pointer to the record whose search key

field value is equal to Ki (or to the data file block containing that record).

2. Within each node, K1 < K2 < … < Kq−1.

3. For all search key field values X in the subtree pointed at by Pi (the ith

subtree, see Figure 17.10(a)), we have:

Ki−1 < X < Ki for 1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q

4. Each node has at most p tree pointers.

5. Each node, except the root and leaf nodes, has at least ⎡(p/2)⎤ tree pointers.

The root node has at least two tree pointers unless it is the only node in the

tree.

6. A node with q tree pointers, q ≤ p, has q − 1 search key field values (and

hence has q − 1 data pointers).

7. All leaf nodes are at the same level. Leaf nodes have the same structure as

internal nodes except that all of their tree pointers Pi are NULL.

Figure (b) illustrates a B-tree of order p = 3. Notice that all search values K in

the B-tree are unique because we assumed that the tree is used as an access

structure on a key field.

MCA Page 181

Figure: B-tree structures. (a) A node in a B-tree with q − 1 search values. (b) A B-

tree of order p = 3. The values were inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

2. B+-Trees:

Most implementations of a dynamic multilevel index use a variation of the B-

tree data structure called a B+-tree. In a B-tree, every value of the search field

appears once at some level in the tree, along with a data pointer. In a B+-tree, data

pointers are stored only at the leaf nodes of the tree; hence, the structure of leaf

nodes differs from the structure of internal nodes.

The leaf nodes of the B+-tree are usually linked to provide ordered access on

the search field to the records. These leaf nodes are similar to the first (base) level

of an index. Internal nodes of the B+-tree correspond to the other levels of a

multilevel index.

MCA Page 182

The structure of the internal nodes of a B+-tree of order p (Figure (a)) is as follows:

1. Each internal node is of the form

<P1, K1, P2, K2,…, Pq-1, Kq-1, Pq>

where q ≤ p and each Pi is a tree pointer.

2. Within each internal node, K1 < K2 < … < Kq−1.

3. For all search field values X in the subtree pointed at by Pi, we have

Ki−1 < X ≤ Ki for 1 < i < q; X ≤ Ki for i = 1; and Ki−1 < X for i = q.

4. Each internal node has at most p tree pointers.

5. Each internal node, except the root, has at least [(p/2)] tree pointers. The root

node has at least two tree pointers if it is an internal node.

6. An internal node with q pointers, q ≤ p, has q − 1 search field values.

The structure of the leaf nodes of a B+-tree of order p (Figure (b)) is as follows:

1. Each leaf node is of the form

<< K1,Pr1>, <K2,Pr2>,, … ,< Kq-1,Prq-1> , Pnext>

where q ≤ p, each Pri is a data pointer, and Pnext points to the next leaf node

of the B+-tree.

2. Within each leaf node, K1 ≤ K2 … , Kq−1, q ≤ p.

3. Each Pri is a data pointer that points to the record whose search field value

is Ki or to a file block containing the record.

4. Each leaf node has at least [(p/2)] values.

5. All leaf nodes are at the same level.

MCA Page 183

Figure: The nodes of a B+-tree. (a) Internal node of a B+-tree with q − 1 search

values. (b) Leaf node of a B+-tree with q − 1 search values and q − 1 data pointers.

Search, Insertion, and Deletion with B+-Trees:

The following Algorithm outlines the procedure using the B+-tree as the access

structure to search for a record.

MCA Page 184

Algorithm: Searching for a Record with Search Key Field Value K, Using a

B+- Tree

n ← block containing root node of B+-tree;

read block n;
while (n is not a leaf node of the B+-tree) do

begin

q ← number of tree pointers in node n;

if K ≤ n.K1 (*n.Ki refers to the ith search field value in node n*)

then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)

else if K > n.Kq−1

then n ← n.Pq

else begin

search node n for an entry i such that n.Ki−1 < K ≤n.Ki ;

n ← n.Pi
end;

read block n

end;

search block n for entry (Ki , Pri) with K = Ki ; (* search leaf node *)

if found

then read data file block with address Pri and retrieve record

else the record with search field value K is not in the data file;

Inserting a record in a file with a B+-tree existence of a key search field, and

they must be modified appropriately for the case of a B+-tree on a nonkey field.

We illustrate insertion and deletion with an example.

MCA Page 185

Fighre: An example of insertion in a B+-tree with p = 3 and pleaf = 2.

MCA Page 186

Figure: An example of deletion from a B+-tree

MCA Page 187

Indexes on Multiple Keys

The primary or secondary keys on which files were accessed were single

attributes (fields). In many retrieval and update requests, multiple attributes are

involved. If a certain combination of attributes is used frequently.

For example, consider an EMPLOYEE file containing attributes Dno

(department number), Age, Street, City, Zip_code, Salary and Skill_code, with

the key of Ssn (Social Security number).

Consider the query: List the employees in department number 4 whose age is

59. Note that both Dno and Age are nonkey attributes, which means that a search

value for either of these will point to multiple records. The following alternative

search strategies may be considered:

1. Assuming Dno has an index, but Age does not, access the records having

Dno = 4 using the index, and then select from among them those records

that satisfy Age = 59.

2. Alternately, if Age is indexed but Dno is not, access the records having Age

= 59 using the index, and then select from among them those records that

satisfy Dno = 4.

3. If indexes have been created on both Dno and Age, both indexes may be

used; each gives a set of records or a set of pointers. An intersection of these

sets of records or pointers yields those records or pointers that satisfy both

conditions.

All of these alternatives eventually give the correct result.

1. Ordered Index on Multiple Attributes:

If we create an index on a search key field that is a combination of <Dno,

Age>. The search key is a pair of values <4, 59> in the above example. In general,

if an index is created on attributes < A1,A2,…,An>, the search key values are

tuples with n values: <v1,v2,…,vn>.

MCA Page 188

A lexicographic ordering of these tuple values establishes an order on this

composite search key. For our example, all of the department keys for department

number 3 precede those for department number 4. Thus <3,n> precedes <4, m>for

any values of m and n. The ascending key order for keys with Dno = 4 would be

<4, 18>, <4, 19>, <4, 20> , and so on. Lexicographic ordering works similarly to

ordering of character strings.

2. Partitioned Hashing:

Partitioned hashing is an extension of static external hashing that allows access

on multiple keys. It is suitable only for equality comparisons; range queries are not

supported. In partitioned hashing, for a key consisting of n components, the hash

function is designed to produce a result with n separate hash addresses. The bucket

address is a concatenation of these n addresses. It is then possible to search for the

required composite search key by looking up the appropriate buckets that match the

parts of the address in which we are interested.

For example, consider the composite search key. If Dno and Age are hashed

into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address. Suppose

that Dno = 4 has a hash address ‘100’ and Age = 59 has hash address ‘10101’.

Then to search for the combined search value, Dno = 4 and Age = 59, one goes to

bucket address 100 10101; just to search for all employees with Age = 59, all

buckets (eight of them) will be searched whose addresses are ‘000 10101’, ‘001

10101’, … and so on. An advantage of partitioned hashing is that it can be easily

extended to any number of attributes. The main drawback of partitioned hashing is

that it cannot handle range queries on any of the component attributes.

3. Grid Files:

Another alternative is to organize the EMPLOYEE file as a grid file. If we

want to access a file on two keys, say Dno and Age as in our example, we can

construct a grid array with one linear scale (or dimension) for each of the search

attributes. Figure shows a grid array for the EMPLOYEE file with one linear scale

for Dno and another for the Age attribute. The scales are made in a way as to

achieve a uniform distribution of that attribute. Thus, in our example, we show that

the linear scale for Dno has Dno = 1, 2 combined as one value 0 on the scale,

whereas Dno = 5 corresponds to the value 2 on that scale. Similarly, Age is divided

MCA Page 189

into its scale of 0 to 5 by grouping ages so as to distribute the employees uniformly

by age. The grid array shown for this file has a total of 36 cells. Each cell points to

some bucket address where the records corresponding to that cell are stored. Figure

also shows the assignment of cells to buckets (only partially).

Thus our request for Dno = 4 and Age = 59 maps into the cell (1, 5)

corresponding to the grid array. The records for this combination will be found in

the corresponding bucket. This method is particularly useful for range queries that

would map into a set of cells corresponding to a group of values along the linear

scales. If a range query corresponds to a match on the some of the grid cells, it can

be processed by accessing exactly the buckets for those grid cells. For example, a

query for Dno ≤ 5 and Age > 40 refers to the data in the top bucket shown in

Figure.

The grid file concept can be applied to any number of search keys. For example,

for n search keys, the grid array would have n dimensions. The grid array thus

allows a partitioning of the file along the dimensions of the search key attributes.

MCA Page 190

UNIT- IV

Algorithms for query processing and Optimization

Translating SQL Queries into Relational Algebra

SQL is the query language that is used in most commercial RDBMSs. An

SQL query is first translated into an equivalent extended relational algebra

expression—represented as a query tree data structure—that is then optimized.

Typically, SQL queries are decomposed into query blocks, which form the basic

units that can be translated into the algebraic operators and optimized.

A query block contains a single SELECT-FROM-WHERE expression, as well

as GROUP BY and HAVING clauses if these are part of the block. Hence, nested

queries within a query are identified as separate query blocks. Because SQL

includes aggregate operators—such as MAX, MIN, SUM, and COUNT

Consider the following SQL query on the EMPLOYEE relation:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > (SELECT MAX (Salary)

FROM EMPLOYEE

WHERE Dno=5);

This query retrieves the names of employees who earn a salary that is greater

than the highest salary in department 5. The query includes a nested subquery and

hence would be decomposed into two blocks. The inner block is:

(SELECT MAX (Salary)

FROM EMPLOYEE

WHERE Dno=5)

This retrieves the highest salary in department 5. The outer query block is:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > c

Where c represents the result returned from the inner block.

MCA Page 191

The inner block could be translated into the following extended relational algebra

expression:

ℑMAX Salary(σ Dno=5(EMPLOYEE))

and the outer block into the expression:

πLname,Fname(σSalary>c(EMPLOYEE))

The query optimizer would then choose an execution plan for each query block.

It is more involved to optimize the more complex correlated nested subqueries,

where a tuple variable from the outer query block appears in the WHERE-clause of

the inner query block. Many techniques are used in advanced DBMSs to unnest

and optimize correlated nested subqueries.

Algorithms for SELECT and JOIN Operations

SELECT Operation

1. Implemention Options for the SELECT Operation

There are many algorithms for executing a SELECT operation, which is

basically a search operation to locate the records in a disk file that satisfy a certain

condition. Some of the search algorithms depend on the file having specific access

paths, and they may apply only to certain types of selection conditions.

The following operations, specified on the relational database:

OP1: σSsn = ‘123456789’ (EMPLOYEE)

OP2: σDnumber > 5 (DEPARTMENT)
OP3: σDno= 5 (EMPLOYEE)

OP4: σDno= 5 AND Salary > 30000 AND Sex = ‘F’ (EMPLOYEE)

OP5: σEssn = ‘123456789’ AND Pno =10(WORKS_ON)
OP6: An SQL Query:

SELECT *

FROM EMPLOYEE

WHERE Dno IN (3,27, 49)

MCA Page 192

Search Methods for Simple Selection: A number of search algorithms are

possible for selecting records from a file. These are also known as file scans,

because they scan the records of a file to search for and retrieve records that satisfy

a selection condition. If the search algorithm involves the use of an index, the

index search is called an index scan. The following search methods (S1 through S7)

are examples of some of the search algorithms that can be used to implement a

select operation:

■ S1—Linear search (brute force algorithm): Retrieve every record in the file,

and test whether its attribute values satisfy the selection condition.

■ S2—Binary search:. If the selection condition involves an equality comparison

on a key attribute on which the file is ordered, binary search—which is more

efficient than linear search—can be used.

■ S3a—Using a primary index: If the selection condition involves an equality

comparison on a key attribute with a primary index—for example, Ssn =

‘123456789’ in OP1—use the primary index to retrieve the record.

■ S3b—Using a hash key: If the selection condition involves an equality

comparison on a key attribute with a hash key—for example, Ssn = ‘123456789’

in OP1—use the hash key to retrieve the record.

■ S4—Using a primary index to retrieve multiple records: If the comparison

condition is >, >=, <, or <= on a key field with a primary index—for example,

Dnumber > 5 in OP2—use the index to find the record satisfying the corresponding

equality condition (Dnumber = 5); then retrieve all subsequent records in the

(ordered) file.

■ S5—Using a clustering index to retrieve multiple records: If the selection

condition involves an equality comparison on a nonkey attribute with a clustering

index—for example, Dno = 5 in OP3—use the index to retrieve all the records

satisfying the condition.

■ S6—Using a secondary (B+-tree) index on an equality comparison: This

search method can be used to retrieve a single record if the indexing field is a key

or to retrieve multiple records if the indexing field is not a key. Queries involving

a range of values (e.g., 3,000 <= Salary <= 4,000) in their selection are called

range queries. In case of range queries, the B+-tree index leaf nodes contain the

MCA Page 193

indexing field value in order—so a sequence of them is used corresponding to the

requested range of that field and provide record pointers to the qualifying records.

■ S7a—Using a bitmap index: If the selection condition involves a set of values

for an attribute (e.g., Dnumber in (3,27,49) in OP6), the corresponding bitmaps for

each value can be OR-ed to give the set of record ids that qualify.

■ S7b—Using a functional index: If there is a functional index defined as:

CREATE INDEX income_ix

ON EMPLOYEE (Salary + (Salary*Commission_pct));

then this index can be used to retrieve employee records that qualify.

2. Search Methods for Conjunctive Selection

If a condition of a SELECT operation is a conjunctive condition—that is, if it

is made up of several simple conditions connected with the AND logical

connective such as OP4 above—the DBMS can use the following additional

methods to implement the operation:

■ S8—Conjunctive selection using an individual index: If an attribute involved

in any single simple condition in the conjunctive select condition has an access

path that permits the use of one of the methods S2 to S6, use that condition to

retrieve the records and then check whether each retrieved record satisfies the

remaining simple conditions in the conjunctive select condition.

■ S9—Conjunctive selection using a composite index: If two or more attributes

are involved in equality conditions in the conjunctive select condition and a

composite index exists on the combined fields

■ S10—Conjunctive selection by intersection of record pointers: If secondary

indexes (or other access paths) are available on more than one of the fields

involved in simple conditions in the conjunctive select condition, and if the indexes

include record pointers (rather than block pointers), then each index can be used to

retrieve the set of record pointers that satisfy the individual condition.

MCA Page 194

3. Search Methods for Disjunctive Selection:

Compared to a conjunctive selection condition, a disjunctive condition is

much harder to process and optimize. For example, consider OP4′:

OP4′: σ Dno=5 OR Salary > 30000 OR Sex =‘F’ (EMPLOYEE)

With such a condition, the records satisfying the disjunctive condition are the

union of the records satisfying the individual conditions. Hence, if any one of the

conditions does not have an access path, we are compelled to use the brute force,

linear search approach. Only if an access path exists on every simple condition in

the disjunction can we optimize the selection by retrieving the records satisfying

each condition—or their record ids—and then applying the union operation to

eliminate duplicates.

Implementing the JOIN Operation

The JOIN operation is one of the most time-consuming operations in query

processing. Many of the join operations encountered in queries are of the

EQUIJOIN and NATURAL JOIN.

There are many possible ways to implement a two-way join, which is a join on

two files. Joins involving more than two files are called multiway joins. The

number of possible ways to execute multiway joins grows rapidly because of the

combinatorial explosion of possible join orderings.

The algorithms for a join operation of the form:

where A and B are the join attributes, which should be domain-compatible

attributes of R and S, respectively. The most common techniques for performing a

join, using the following sample operations:

MCA Page 195

1. Methods for Implementing Joins

■ J1—Nested-loop join (or nested-block join): This is the default (brute force)

algorithm because it does not require any special access paths on either file in the

join. For each record t in R (outer loop), retrieve every record s from S (inner loop)

and test whether the two records satisfy the join condition t[A] = s[B].

■ J2—Index-based nested-loop join (using an access structure to retrieve the

matching records): If an index (or hash key) exists for one of the two join

attributes—say, attribute B of file S—retrieve each record t in R (loop over file R),

and then use the access structure to retrieve directly all matching records s from S

that satisfy s[B] = t[A].

■ J3—Sort-merge join: If the records of R and S are physically sorted (ordered)

by value of the join attributes A and B, respectively, we can implement the join in

the most efficient way possible. Both files are scanned concurrently in order of the

join attributes, matching the records that have the same values for A and B. If the

files are not sorted, they may be sorted first by using external sorting.

■ J4—Partition-hash join (or just hash-join): The records of files R and S are

partitioned into smaller files. The partitioning of each file is done using the same

hashing function h on the join attribute A of R (for partitioning file R) and B of S

(for partitioning file S). First, a single pass through the file with fewer records (say,

R) hashes its records to the various partitions of R; this is called the partitioning

phase. The collection of records with the same value of h(A) are placed in the

same partition, which is a hash bucket in a hash table in main memory. In the

second phase, called the probing phase, a single pass through the other file (S)

then hashes each of its records using the same hash function h(B) to probe the

appropriate bucket, and that record is combined with all matching records from R

in that bucket.

2. How Buffer Space and Choice of Outer-Loop

File Affect Performance of Nested-Loop Join

The buffer space available has an important effect on some of the join

algorithms. The algorithm can read one block at a time for the inner-loop file and

use its records to probe (that is, search) the outer-loop blocks that are currently in

main memory for matching records. This reduces the total number of block

MCA Page 196

accesses. An extra buffer in main memory is needed to contain the resulting

records after they are joined, and the contents of this result buffer can be appended

to the result file—the disk file that will contain the join result— whenever it is

filled. This result buffer block then is reused to hold additional join result records.

In the nested-loop join, it makes a difference which file is chosen for the outer

loop and which for the inner loop. If EMPLOYEE is used for the outer loop, each

block of EMPLOYEE is read once, and the entire DEPARTMENT file (each of its

blocks) is read once for each time we read in blocks of the EMPLOYEE file.

The join algorithm uses a buffer to hold the joined records of the result file.

Once the buffer is filled, it is written to disk and its contents are appended to the

result file, and then refilled with join result records.

3. How the Join Selection Factor Affects Join Performance:

Another factor that affects the performance of a join, particularly the single-

loop method J2, is the fraction of records in one file that will be joined with records

in the other file. We call this the join selection factor of a file with respect to an

equijoin condition with another file. This factor depends on the particular equijoin

condition between the two files.

4. General Case for Partition-Hash Join

The hash-join method J4 is also efficient. In this case, only a single pass is

made through each file, whether or not the files are ordered. If the hash table for

the smaller of the two files can be kept entirely in main memory after hashing

(partitioning) on its join attribute, the implementation is straightforward. If,

however, the partitions of both files must be stored on disk, the method becomes

more complex, and a number of variations to improve the efficiency have been

proposed. We discuss two techniques: the general case of partition-hash join and a

variation called hybrid hash-join algorithm, which has been shown to be efficient.

In the general case of partition-hash join, each file is first partitioned into M

partitions using the same partitioning hash function on the join attributes. Then,

each pair of corresponding partitions is joined. For example, suppose we are

joining relations R and S on the join attributes R.A and S.B:

MCA Page 197

In the partitioning phase, R is partitioned into the M partitions R1, R2, … , RM,

and S into the M partitions S1, S2, …, SM.

5. Hybrid Hash-Join

The hybrid hash-join algorithm is a variation of partition hash-join, where

the joining phase for one of the partitions is included in the partitioning phase. To

illustrate this, let us assume that the size of a memory buffer is one disk block; that

nB such buffers are available; and that the partitioning hash function used is h(K) =

K mod M, so that M partitions are being created, where M < nB.

Algorithms for PROJECT and SET Operations

A PROJECT operation π<attribute list>(R) from relational algebra implies that

after projecting R on only the columns in the list of attributes, any duplicates are

removed by treating the result strictly as a set of tuples. However, the SQL query:

SELECT Salary

FROM EMPLOYEE

produces a list of salaries of all employees. If there are 10,000 employees and only

80 distinct values for salary, it produces a one column result with 10,000 tuples.

This operation is done by simple linear search by making a complete pass through

the table.

Getting the true effect of the relational algebra π<attribute list>(R) operator is

straightforward to implement if <attribute list> includes a key of relation R,

because in this case the result of the operation will have the same number of tuples

as R, but with only the values for the attributes in <attribute list> in each tuple. If

<attribute list> does not include a key of R, duplicate tuples must be eliminated.

This can be done by sorting the result of the operation and then eliminating

duplicate tuples, which appear consecutively after sorting. Hashing can also be

used to eliminate duplicates: as each record is hashed and inserted into a bucket of

the hash file in memory

A sketch of the algorithm is:

Algorithm: Implementing the operation T ← π<attribute list> (R).

MCA Page 198

create a tuple t[] in T ′ for each tuple t in R;

(* T′ contains the projection results before duplicate elimination *)

If <attribute list> includes a key of R

then T ← T ′

else { sort the tuples in T ′;

set i ← 1, j ← 2;
while i ≤ n

do { output the tuple T′[i] to T;

while T ′[i] = T′[j] and j ≤ n do j ← j + 1; (* eliminate duplicates *)

i ← j; j ← i + 1
}

}
(*T contains the projection result after duplicate elimination*)

Set operations UNION, INTERSECTION, SET DIFFERENCE, and

CARTESIAN PRODUCT—are sometimes expensive to implement, since UNION,

INTERSECTION, MINUS or SET DIFFERENCE are set operators and must

always return distinct results.

In particular, the CARTESIAN PRODUCT operation R × S is expensive

because its result includes a record for each combination of records from R and S.

Also, each record in the result includes all attributes of R and S. The other three set

operations—UNION, INTERSECTION, and SET DIFFERENCE—apply only to

type-compatible (or union-compatible) relations, which have the same number of

attributes and the same attribute domains.

Algorithm: Implementing the operation T ← R ∪ S.

sort the tuples in R and S using the same unique sort attributes;

set i ← 1, j ← 1;

while (i ≤ n) and (j ≤ m)

do { if R(i) > S(j)

then { output S(j) to T;

set j ← j + 1
}

elseif R(i) < S(j)

then { output R(i) to T;

set i ← i + 1

MCA Page 199

}

else set j ← j + 1 (* R(i)=S(j), so we skip one of the duplicate tuples *)

}

if (i ≤ n) then add tuples R(i) to R(n) to T;

if (j ≤ m) then add tuples S(j) to S(m) to T;

Algorithm: Implementing the operation T ← R ∩ S.

sort the tuples in R and S using the same unique sort attributes;

set i ← 1, j ← 1;

while (i ≤ n) and (j ≤ m)

do { if R(i) > S(j)

then set j ← j + 1

elseif R(i) < S(j)
then set i ← i + 1

else { output R(j) to T; (* R(i) = S(j), so we output the tuple *)

set i ← i + 1, j ← j + 1
}

}

Algorithm: Implementing the operation T ← R – S.

sort the tuples in R and S using the same unique sort attributes;

set i ← 1, j ← 1;

while (i ≤ n) and (j ≤ m)

do { if R(i) > S(j)

then set j ← j + 1

elseif R(i) < S(j)

then { output R(i) to T; (* R(i) has no matching S(j), so output R(i) *)

set i ← i + 1
}

else set i ← i + 1, j ← j + 1

}
if (i ≤ n) then add tuples R(i) to R(n) to T;

Hashing can also be used to implement UNION, INTERSECTION, and SET

DIFFERENCE. One table is first scanned and then partitioned into an in-memory

hash table with buckets, and the records in the other table are then scanned one at a

time and used to probe the appropriate partition.

MCA Page 200

Introduction to Transaction Processing Concepts

and Theory

The concept of transaction provides a mechanism for describing logical units

of database processing. Transaction processing systems are systems with large

databases and hundreds of concurrent users executing database transactions.

Examples of such systems include airline reservations, banking, credit card

processing, online retail purchasing, stock markets, supermarket checkouts, and

many other applications.

Introduction to Transaction Processing

In this section, we learn the concepts of concurrent execution of transactions

and recovery from transaction failures.

1. Single-User versus Multiuser Systems

A DBMS is single-user. One user at a time can use the system.

A DBMS is multiuser. Many users can use the system and access the database

concurrently. For example, an airline reservations system is used by hundreds of

users and travel agents concurrently.

2. Transactions, Database Items, Read and Write Operations,

and DBMS Buffers

A transaction is an executing program that forms a logical unit of database

processing. A transaction includes one or more database access operations. The

operations are insertion, deletion, modification or retrieval operations.

One way of specifying the transaction boundaries is by specifying explicit

begin transaction and end transaction statements in an application program.

Read-only transaction:

The operations in a transaction do not update the database but only retrieve

data. Such a transaction is called a read-only transaction. Otherwise it is known

as a read-write transaction.

MCA Page 201

The basic database access operations are

1. Read_item(X). Reads a database item named X into a program variable

X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main.

3. Copy item X from the buffer to the program variable named X.

2. Write_item(X). Writes the value of program variable X into the database

item named X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main

3. Copy item X from the program variable named X into its correct location in

the buffer.

4. Store the updated disk block from the buffer back to disk.

3. Buffers: The DBMS will generally generally maintain a number of buffers in

main memory that hold database disk block containing the database items

being

processed.

When these buffers are all occupied, and additional database disk blocks

must

be copied into memory, some buffer replacement policy is used. If the chosen

buffer has been modified, it must be written back to disk before it is reused.

3. Why Concurrency Control Is Needed

Several problems can occur when concurrent transactions execute in an

uncontrolled manner.

MCA Page 202

For example, the fig, shows transaction T1:

A transaction T1 that transfers N reservations from one flight stored in the database

item named X to another flight in the database item named Y.

The following fig. shows another transaction T2:

A simpler transaction T2 reserves M seats on the first flight (X) referenced in

transaction T1.

The types of problems may encounter with these two run concurrently.

a. The Lost Update Problem:

This problem occurs when two transactions that access the same database items

have their operations are interleaved that makes the value of some database items

are incorrect.

MCA Page 203

For example, if X = 80 at the start N = 5 and M = 4 the final result X = 79.

But in the interleaving of operations shown in Figure it is X = 84 because the update

in T1 that removed the five seats from X was lost.

b. The Temporary Update (or Dirty Read) Problem:

This problem occurs when one transaction updates a database item and then the

transaction fails for some reason. The updated item is accessed (read) by another

transaction before it is changed back to its original value.

The transaction T1 updates item X and then fails before completion, so the

system must roll back X to its original value. Before it can do, transaction T2 reads

the temporary value of X.

MCA Page 204

The value of item X that is read by T2 is called dirty data because it has been

created by a transaction that has not completed and committed. This problem is also

known as the dirty read problem.

c. The Incorrect Summary Problem.

If one transaction is calculating an aggregate summary function on a number

of records while other transactions are updating some of these records, the aggregate

function may calculate some values before they are updated and others after they are

updated.

Ex:

The transaction T3 is calculating the total number of reservations on all the

flights; meanwhile, transaction T1 is executing.

The result of T3 will be off by an amount N because T3 reads the value of X

after N seats have been subtracted from it but reads the value of Y before those N

seats have been added to it.

MCA Page 205

4. Why Recovery Is Needed

Whenever a transaction is submitted to a DBMS for execution, the system

is responsible for either all the operations in the transaction are completed and

their effect is recorded permanently in the database, or the transaction does not

effect on the database.

Types of Failures: Failures are generally classified as transaction, system, and

media failures.

1. A computer failure (system crash): A hardware, software, or network

error occurs in the computer system during transaction execution.

2. A transaction or system error: Some operation in the transaction may

cause it to fail, such as integer overflow or division by zero.

3. Local errors: During the transaction execution, certain conditions may occur

that cancellation of the transaction. For example, Insufficient account

balance in a banking database, a transaction, such as a fund withdrawal, to be

canceled.

4. Concurrency control: The concurrency control method may abort a

transaction because it violates serializability.

5. Disk failure: Some disk blocks may lose their data because of a read or

write head crash.

6. Physical problems: This refers to an endless list of problems that includes

power or air-conditioning failure, fire, theft, sabotage, overwriting disks or

tapes by mistake, and mounting of a wrong tape by the operator.

Whenever a failure of type 1 through 4 occurs, the system must keep sufficient

information to quickly recover from the failure. The failures of type 5 or 6 do not

happen frequently; if they do occur, recovery is a major task.

MCA Page 206

Transaction and System Concepts

Transaction States and Additional Operations

A transaction is an atomic unit of work that is either completed or not done at

all., The recovery manager of the DBMS needs to keep track of the following

operations:

■ BEGIN_TRANSACTION: This marks the beginning of transaction execution.

■ READ or WRITE: These specify read or write operations on the database

items.

■ END_TRANSACTION: This specifies that READ and WRITE transaction

operations have ended and marks the end of transaction execution.

■ COMMIT_TRANSACTION: This signals a successful end of the transaction so

that any changes on the database executed by the transaction can be done.

■ ROLLBACK (or ABORT): This signals that the transaction has ended

unsuccessfully. So the changes on the database executed by the transaction can be

undone.

The following diagram shows the states for transaction execution.

A transaction goes into an active state immediately after it starts execution,

where it can execute its READ and WRITE operations. When the transaction ends,

it moves to the partially committed state. At this point, some recovery protocols

need, that means recording the changes in the system log. After that the transaction

reached its commit point and enter the committed state.

MCA Page 207

Once the transaction committed, the transacttion executes successfully and all

its changes must be recorded permanently in the database.

A transaction can go to the failed state, if one of the checks fails or if the

transaction is aborted during its active state. The transaction undo the effect of its

WRITE operations on the database.

The System Log

To recovery from failures of transactions, the system maintains a log and keep

track of all transaction operations that affect the values of database items. The log

file contain the following information:

1. [start_transaction, T]. Indicates that transaction T has started execution. T

refers to a unique transaction-id that is generated automatically by the system

for each transaction.

2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has

changed the value of database item X from old_value to new_value.

3. [read_item, T, X]. Indicates that transaction T has read the value of database

item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and

chsnges recorded at the database.
5. [abort, T]. Indicates that transaction T has been aborted.

The log contains a record of every WRITE operation that changes the value

of some database item, it is possible to undo the effect of these WRITE

operations of a transaction T by using old values of transaction in the log file.

Redoing the operation of a transaction may also be necessary if all its updates

are recorded in the log file, all these new_values have been written permanently

in the actual database on the disk.

Commit Point of a Transaction

A transaction T reaches its commit point when all its operations that access

the database have been executed successfully and the effect of all the transaction

operations on the database have been recorded in the log. Beyond the commit

point, the transaction is said to be committed, and its effect must be permanently

recorded in the database.

MCA Page 208

Characterizing Schedules

Characterizing Schedules Based on Recoverability

The order of execution of operations from all the various transactions is

known as a schedule (or history).

1. Schedules (Histories) of Transactions:

A schedule S of n transactions T1, T2, … , Tn is an ordering of the

operations of the transactions, for each transaction Ti that participates in the

schedule S, the operations of Ti in S must appear in the same order in which they

occur in Ti.

A shorthand notation for describing a schedule uses the symbols b, r, w, e, c,

and a for the operations begin_transaction, read_item, write_item,

end_transaction, commit, and abort, respectively.

For ex, the schedule of the following fig. can be written as follows:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

MCA Page 209

Similarly the schedule of the following fig. can be written as follows:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Conflicting Operations in a Schedule:

Two operations in a schedule are said to conflict if they satisfy all three of the

following conditions:

(1) they belong to different transactions;

(2) they access the same data item X; and

(3) at least one of the operations is a write_item(X).

For example, in schedule Sa,

1. the operations r1(X) and w2(X) conflict,

2. the operations r2(X) and w1(X), and

3. the operations w1(X) and w2(X).

4. the operations r1(X) and r2(X) do not conflict, since they are both read

operations.

5. the operations w2(X) and w1(Y) do not conflict because they operate on

distinct data items X and Y;

MCA Page 210

6. the operations r1(X) and w1(X) do not conflict because they belong to the

sametransaction.

A schedule S of n transactions T1, T2, … , Tn is said to be a complete

schedule if the following conditions hold:

1. The operations in S are exactly those operations in T1, T2, … , Tn, including a

commit or abort operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their relative order of

appearance in S is the same as their order of appearance in Ti.

2. Characterizing Schedules Based on Recoverability

For some schedules it is easy to recover from transaction and system failures,

whereas for other schedules the recovery process can be difficult.

It is important to characterize the types of schedules for which recovery is

possible, as well as for which recovery is relatively simple.

A schedule S is recoverable if no transaction T in S commits until all

transactions T′ that have written some item X that T reads have committed.

Consider the schedule Sa′ given below, which is the same as schedule Sa except

that two commit operations have been added to Sa:

Sa′: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa′ is recoverable, even though it suffers from the lost update problem.

Consider the schedule Sc as follows:

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before

T1 commits.

In a recoverable schedule, no committed transaction needs to be rolled back.

However, this phenomenon known as cascading rollback to occur, where an

uncommitted transaction has to be rolled back because it read an item from a

transaction that failed.

MCA Page 211

A schedule is said to be cascadeless, or to avoid cascading rollback, if every

transaction in the schedule reads only items that were written by committed

transactions.

Characterizing Schedules Based on Serializability

The types of schedules that are always considered to be correct when

concurrent transactions are executing. Such schedules are known as serializable

schedules. Suppose that two users submit the DBMS transactions T1 and T2 in

Figure at the same time.

(a) Serial schedule A: T1 followed by T2. (b) Serial schedule B: T2 followed by T1.

1. Execute all the operations of transaction T1 (in sequence) followed by all the

operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

operations of transaction T1 (in sequence).

If interleaving of operations is allowed, many possible orders in which the

system can execute the individual operations.

The concept of serializability of schedules is used to identify which schedules

are correct when transaction executions have interleaving of their operations in the

schedules.

1. Serial, Nonserial, and Conflict-Serializable Schedules

A schedule S is serial if, for every transaction T participating in the schedule,

all the operations of T are executed consecutively in the schedule; otherwise, the

MCA Page 212

schedule is called nonserial. Therefore, in a serial schedule, only one transaction at

a time is active. No interleaving occurs in a serial schedule.

Serial schedule: Entire transactions are performed in serial order: T1 and then T2.

Ex: Schedule A and Schedule B.

In serial schedule every transaction is executed from beginning to end without

any interface from the operations of others transactions, we get a correct end result.

The problem in serial schedules is, if a transaction waits for an I/O operation to

complete, we cannot switch the CPU processor to another transaction, thus wasting

valuable CPU processing time. Hence serial schedule are generally considered as

unacceptable in practice.

Non-serial schedule: Interleaving the operations of a transactions are called Non-

serial schedule.

(c) Two nonserial schedules C and D with interleaving of operations.

Example:

Assume that the initial values of database items are X = 90 and Y = 90 and N =

3 and M = 2.

After executing transactions T1 and T2, expect the database values to be X =

89 and Y = 93 in serial schedules A or B gives the correct results. The non-serial

schedule C gives the results X = 92 and Y = 93, in which the X value is erroneous,

whereas schedule D gives the correct result.

MCA Page 213

We would like to determine which of the nonserial schedules always give a

correct result and which may give erroneous results.

We can form two disjoint groups of the nonserial schedules— those are

equivalent to one (or more) of the serial schedules and hence are serializable, and

that are not equivalent to any serial schedule and hence are not serializable.

There are several ways to define schedule equivalence. Two schedules are

called result equivalent if they produce the same final state of the database. For

example, in Figure, schedules S1 and S2 will produce the same final database state

if they execute on a database with an initial value of X = 100.

Two definitions of equivalence of schedules are generally used.They are

conflict equivalence and view equivalence.

Conflict Equivalence of Two Schedules: Two schedules are said to be conflict

equivalent if the order of any two conflicting operations is the same in both

schedules. Otherwise not conflict equivalent.

Example: S1: r1(X), w2(X)

S2: w2(X), r1(X) not conflict equivalent.

Serializable Schedules: A schedule is to the conflict serializable if it is equivalent

to some serial schedule S′. In such a case, we can reorder the nonconflicting

operations in S until we form the equivalent serial schedule S′.

2. Testing for Serializability of a Schedule

There is a simple algorithm for determining the conflict serializablility of a

schedule.

The algorithm looks at only the read_item and write_item operations in a

schedule to construct a precedence graph, which is a directed graph G = (N, E)

that consists of a set of nodes N = {T1, T2, … , Tn } and a set of directed edges E
= {e1, e2, … , em }. There is one node in the graph for each transaction Ti in the

MCA Page 214

schedule. Each edge ei in the graph is of the form (Tj → Tk), 1 ≤ j ≤ n, 1 ≤ k ≤ n,

where Tj is the starting node and Tk is the ending node of ei. Such an edge

created if one of the operation in Tj appears in the schedule before the conflicting

operation in Tk.

Algorithm: Testing Conflict Serializability of a Schedule S

1. For each transaction Ti participating in schedule S, create a node labeled Ti

in the precedence graph.

2. For each case in S where Tj executes a read_item(X) after Ti executes a

write_item(X), create an edge (Ti → Tj) in the precedence graph.

3. For each case in S where Tj executes a write_item(X) after Ti executes a

read_item(X), create an edge (Ti → Tj) in the precedence graph.

4. For each case in S where Tj executes a write_item(X) after Ti executes a

write_item(X), create an edge (Ti → Tj) in the precedence graph

5. The schedule S is serializable if and only if the precedence graph has no

cycles.

In general, several serial schedules can be equivalent to S if the precedence

graph for S has no cycle. However, if the precedence graph has a cycle, it is easy to

show that we cannot create any equivalent serial schedule, so S is not serializable.

Figure: (a) Precedence graph for serial schedule A. (b) Precedence graph for serial

schedule B. (c) Precedence graph for schedule C (not serializable). (d) Precedence

graph for schedule D (serializable, equivalent to schedule A).

MCA Page 215

3. View Equivalence and View Serializability

Two schedules S and S′ are said to be view equivalent if the following three

conditions hold:

1. The same set of transactions participates in S and S′, and S and S′ include the

same operations of those transactions.

2. For any operation ri(X) of Ti in S, if the value of X read by the operation has

been written by an operation wj(X) of Tj, the same condition must hold for

the value of X read by operation ri(X) of Ti in S′.

3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then

wk(Y) of Tk must also be the last operation to write item Y in S′.

The idea behind view equivalence is that, as long as each read operation of a

transaction reads the result of the same write operation in both schedules, the write

operations of each transaction must produce the same results.

The condition 3 ensures that the final write operation on each data item is the

same in both schedules. A schedule S is said to be view serializable if it is view

equivalent to a serial schedule.

MCA Page 216

Concurrency Control Techniques

There are two techniques used to control the concurrency, They are

1. Looking

2. Time stamps

Two-Phase Locking Techniques for Concurrency Control

Some of the main techniques used to control concurrent execution of

transactions are based on the concept of locking data items. A lock is a variable

associated with a data item.

Binary Locks: A binary lock can have two states. They are locked(1), unlocked (0).

If the value of the lock on X is 1, then item X cannot be accessed by other

requests. If the value of the lock on X is 0, then item can be accessed by other

transactions.

In simple binarysequence every transaction must obey the following rules:

1. A transaction T must issue the operation lock_item(X) before any

read_item(X) or write_item(X) operations are performed in T.

2. A transaction T must issue the operation unlock_item(X) after all

read_item(X) and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds

the lock on item X.

4. A transaction T will not issue an unlock_item(X) operation unless it already

holds the lock on item X.

Shared/Exclusive (or Read/Write) Locks:

If a transaction is to write an item X, it must have exclusive access to X. For

this purpose, a different type of lock, called a multiple-mode lock, is used. In this

scheme—called shared/exclusive or read/write locks.

A lock associated with an item X, LOCK(X) has three possible states:

1. Read-locked

2. Write-locked

3. Unlocked

MCA Page 217

A read-locked item is also called share-locked because other transactions are

allowed to read the item, whereas write-locked item is called exclusive-locked

because a single transaction exclusively holds the lock on the item.

When we use the shared ro exclusive locking scheme, the system must enforce

the following rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X)

before any read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any

write_item(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X)

and write_item(X) operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if it already holds a

read lock or a write lock on item X.

5. A transaction T will not issue a write_lock(X) operation if it already holds a

read lock or write lock on item X.

6. A transaction T will not issue an unlock(X) operation unless it already

holds a read lock or a write lock on item X.

Conversion (Upgrading, Downgrading) of Locks.

A transaction that already holds a lock on item X is allowed under certain

conditions to convert the lock from one locked state to another.

For example, a transaction T issue a read_lock(X) and then later to upgrade the

lock by issuing a write_lock(X) operation.

For example, a transaction T to issue write_lock(X) and then later to downgrade

the lock by issuing a read_lock(X) operation.

Guaranteeing Serializability by Two-Phase Locking:

1. Using binary locks or read or write locks in transaction does not guarantee

serializability of schedules.

2. The following example show the preceding locking rules are followed but a

non serial schedule will gives the wrong result.

MCA Page 218

Seriaal:

This is because in serializable schedule the Y in T1 was unlocked too. It will

gives correct result, we must follow an additional protocol. The best known

protocol is Two Phase Locking.

Non Serial:

Result of schedule S: X=50, Y=50 (nonserializable)

MCA Page 219

A transaction is said to follow the two phase locking protocol. If all locking

operations preceed the first unlock operation in the transaction.

In the two phase locking a transaction can be divided into 2 phases. They are

growing phase, shinking phase.

Growing or Expanding Phase: In growing phase new locks on items can be

acquired but not release the locks.

Shinking Phase: In this locks can be released but no new locks are acquired.

The Transactions T1 and T2 in Figure (a) do not follow the two-phase locking.

Because the write_lock(X) operation follows the unlock(Y) operation in T1, and

similarly the write_lock(Y) operation follows the unlock(X) operation in T2.

If we follow two phase locking the transactions can be rewritten as T1′ and T2′

as follows:

It can be proved that in every transaction in a schedule follow the two phase

locking protocol, the schedule is guaranteed to be serializible.

Basic, Conservative, Strict, and Rigorous Two-Phase Locking.

There are a number of variations of two-phase locking (2PL).

Conservative 2 Phase Locking: In this it requires a transaction to lock all the

items it accesses before the transaction begins execution, by predeclaring its read-

set and write-set. Conservative 2PL is a deadlock-free protocol.

MCA Page 220

Static 2 Phase Locking: In this a transaction T does not release any of its write

locks until after it commits (or) aborted, it is not a deadlock free.

Rigorous 2Phase Locking: In this a transaction T does not release any of its locks

(read lock or write lock) until after it commits or aborts.

The two phase locking protocol guarentees serializability, but the use of locks

can cause two additional problems. They are

1. Dead lock 2. Starvation

Dead Lock: The Transaction T1′ acquires a lock on database item(y). The

transaction T2′ acquires a lock on database item(x). The transation T1′ needs

database item X to complete their work and the transaction T2′ nedds database item
Y. The two transactions waiting for the database items locked by other transactions.

Figure: A partial schedule of T1′ and T2′ that is in a state of deadlock.

Deadlock Prevention Protocols:

In prevent deadlock to use a deadlock prevention protocol. One of the

deadlock prevention protocol, which is conservative in two-phase locking, requires

that every transaction lock all the items it needs in advance. If any of the items

cannot be obtained, none of the items are locked. The transaction tries to lock the

data item.

A number of deadlock prevention schemes have been proposed that make a

decision which transaction should be wait and which transaction should be aborted.

These techniques can use the concept of transaction timestamp TS(T).

MCA Page 221

The timestamps are typically based on the order in which transactions are

started; hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2).

The older transaction has smaller time stamp value.

Two schemes that prevent deadlock are called wait-die and wound-wait.

The rules followed by these schemes are:

■ Wait-die: If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait;

otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the same

timestamp.

■ Wound-wait: If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds

Tj) and restart it later with the same timestamp; otherwise (Ti younger than Tj) Ti

is allowed to wait.

Deadlock Detection:

A simple way to detect deadlock is to construct a wait for graph for eah

transaction is currently executed.

Whenever a transaction Ti is waiting to lock an item X that is currently locked

by a transaction Tj , a directed edge (Ti → Tj) is created in the wait-for graph.

Whenever a transaction Tj is waiting to lock an item Y that is currently locked

by a transaction Tj , a directed edge (Tj → Ti) is created in the wait-for graph.

We have a state of deadlock if and only if the wait-for graph has a cycle.

If the system is in a state of deadlock, choosing which transactions to abort is

known as victim selection. The algorithm for victim selection should generally

avoid selecting transactions that have been running for a long time and that have

MCA Page 222

performed many updates, and it should select transactions that have not made many

changes.

Time outs: If a transaction waits for a period longer than a system-defined timeout

period, the system assumes that the transaction may be deadlocked and aborts.

Concurrency Control Based on Timestamp Ordering

A timestamp is a unique identifier created by the DBMS to identify a

transaction. Typically, timestamp values are assigned in the order in which the

transactions are submitted to the system. We will refer to the timestamp of

transaction T as TS(T).

Timestamp Ordering Algorithm:

In this scheme order of transactions are based on their timestamps. A schedule in

which the transactions participate is then serializable, and the equivalent serial

schedule has the transactions in order of their timestamp values. This is called

timestamp ordering (TO).

In this algorithm each database item X has two timestamp (TS) values:

1. read_TS(X): The read timestamp of item X is the largest timestamp of

transactions that have successfully read item X.

i.e., read_TS(X) = TS(T), where T is the youngest transaction that has read X

successfully.

2. write_TS(X): The write timestamp of item X is the largest timestamps among

all time stamps of transactions that have successfully written item X.

i.e., write_TS(X) = TS(T), where T is the youngest transaction that has written X

successfully.

Basic Timestamp Ordering (TO):

The concurrency control algorithm must check whether conflicting operations

violate the timestamp ordering in the following two cases:

1. Transaction T issues a write_item(X) operation, the following check is

performed:

MCA Page 223

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T

and reject the operation.

This should be done because some younger transaction read or written the value

of item X before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)

operation of T and set write_TS(X) to TS(T).

2. Transaction T issues a read_item(X) operation, the following check is

performed:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.

This should be done because some younger transaction already written the value

of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and set

read_TS(X) to the larger of TS(T) and the current read_TS(X).

Strict Timestamp Ordering (TO):

A transaction T issues a read_item(X) or write_item(X) such that TS(T) >

write_TS(X) has its read or write operation delayed until the transaction has

committed or aborted.

Thomas’s Write Rule:

A modification of the basic TO algorithm, known as Thomas’s write rule.

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue

processing. We must ignore the write_item(X) operation of T because it is already

outdated any conflict arising the situation would be detected by case (1).

3. If neither the condition in case (1) nor the condition in case (2) occurs, then

execute the write_item(X) operation of T and set write_TS(X) to TS(T).

MCA Page 224

Validation Concurrency Control

In optimistic concurrency control techniques, also known as validation or

certification techniques, no checking is done while the transaction is executing.

In the transaction execution updates are not applicable directly to the database

items until the transaction reaches the end.

During transaction execution, all updates are applied to local copies of the data

items. At the end of transaction execution, a validation phase checks whether any

of the transaction’s updates violate serializability.

If serializability is not violated, the transaction is committed and the database is

updated from the local copies; otherwise, the transaction is aborted.

There are three phases for this concurrency control protocol:

1. Read phase

2. Validation phase

3. Write phase

1. Read phase:

A transaction can read values of committed data items from the database.

2. Validation phase:

Checking is performed to ensure that serializability will not be violated if the

transaction updates are applied to the database.

In validation phase if one of the condition holds on the transactions, the

transaction is valid, otherwise the transaction is not valid.

1. Transaction Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the read_set of

Ti has no items in common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the

write_set of Tj, and Tj completes its read phase before Ti completes its read

phase.

MCA Page 225

3. Write phase:

If the validation phase is successful, the transaction updates are applied to the

database; otherwise, the updates are discarded and the transaction is restarted.

Granularity of Data Items and Multiple Granularity Locking

All concurrency control techniques assume that the database is formed of a

number of named data items. A database item could be chosen to be one of the

following:

■ A database record

■ A field value of a database record

■ A disk block

■ A whole file

■ The whole database

The size of data items is often called the data item granularity. Fine

granularity refers to small item sizes, whereas coarse granularity refers to large

item sizes.

Multiple Granularity Level Locking

The following diagram shows a simple granularity hierarchy with a database

containing two files. Each file containing several disk pages, and each page

containing several records. This can be used to illustrate a multiple granularity

level 2PL protocol.

Figure: A granularity hierarchy for illustrating multiple granularity level locking.

MCA Page 226

Suppose transaction T1 wants to update all the records in file f1, and T1

requests and is granted an exclusive lock for f1. Then all of f1’s pages (p11 through

p1n)and the records contained on those pages are locked in exclusive mode.

Suppose another transaction T2 only wants to read record r1nj from page p1n of

file f1; then T2 would request a shared record-level lock on r1nj. However, the

database system must verify the requested lock with already held locks. One way to

verify this is to traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a

conflicting lock is held on any of those items, then the lock request for r1nj is

denied and T2 is blocked and must wait. This traversal would be fairly efficient.

To make multiple granularity level locking practical, additional types of locks,

called intention locks, are needed.

Intention locks: The intention locks of a transaction to indicate along the path

from the root to the desired node, There are three types of intention locks:

1. Intention-shared (IS): It indicates that one or more shared locks will be

requested on some descendant node(s).

2. Intention-exclusive (IX): It indicates that one or more exclusive locks will

be requested on some descendant node(s).

MCA Page 227

3. Shared-intention-exclusive (SIX): It indicates that the current node is

locked in shared mode but one or more exclusive locks will be requested on

some descendant node(s).

The multiple granularity locking (MGL) protocol consists of the following rules:

1. The root of the tree must be locked first, in any mode.

2. A node N locked by a transaction T in S or IS mode only if the parent node

N is already locked by transaction T in either IS or IX mode.

3. A node N can be locked by a transaction T in X, IX, or SIX mode only if the

parent of node N is already locked by transaction T in either IX or SIX mode.

4. A transaction T can lock a node only if it has not unlocked any node.

5. A transaction T can unlock a node, N, only if none of the children of node N

are currently locked by T.

Example: Consider the following three transactions:

1. T1 wants to update record r111 and record r211.

2. T2 wants to update all records on page p12.

3. T3 wants to read record r11j and the entire f2 file.

MCA Page 228

MCA Page 229

Database Recovery Techniques

Database Recovery Concepts

1. Recovery Outline and Categorization of Recovery Algorithms:

Recovery from transaction failures usually means that the database is restored

to the most recent consistent state before the time of failure. This information is

typically kept in the system log. A typical strategy for recovery may be

summarized informally as follows:

1. Due to catastrophic failure, such as a disk crash, redoing the operations.

2. When the database is not physically damaged, but has become inconsistent

due to non-catastrophic failure by undoing some operations.

Two main techniques for recovery from non-catastrophic transaction faillures are

1. Deferred update or NO-UNDO/REDO algorithm.

2. Immediate update or UNDO/REDO algorithm.

The Deferred update techniques do not physically update the database on

disk until after a transaction commits; then the updates are recorded in the database.

If a transaction fails before reaching its commit point, it will not have changed the

database on disk in any way. So UNDO is not needed. It may be necessary to

REDO the effect of the operations of a committed transaction from the log, because

their effect may not yet have been recorded in the database on disk. Hence,

deferred update is also known as the NO-UNDO/REDO algorithm.

In the immediate update techniques, the database may be updated by some

operations of a transaction before the transaction reaches its commit point. These

operations are typically recorded in the log on disk by force-writing before they

are applied to the database. If a transaction fails after recording some changes in

the database on disk but before reaching its commit point, the effect of its

operations on the database must be undone; that is, the transaction must be rolled

back. In the general case of immediate update, both undo and redo may be required

during recovery. This technique, known as the UNDO/REDO algorithm, requires

both operations.

MCA Page 230

2. Caching (Buffering) of Disk Blocks:

Typically, multiple disk pages that include the data items to be updated are

cached into main memory buffers and then updated in memory before being

written back to disk.

A collection of in-memory buffers, called the DBMS cache, is kept under the

control of the DBMS for the purpose of holding these buffers. A directory for the

cache is used to keep track of which database items are in the buffers. This can be a

table of < Disk_page_address, Buffer_location,…> entries.

When the DBMS requests action on some item, first it checks the cache

directory to determine whether the disk page containing the item is in the DBMS

cache. If it is not, the item must be located on disk, and the appropriate disk pages

are copied into the cache.

It may be necessary to replace (or flush) some of the cache buffers to make

space available for the new item. Some page replacement strategy from OS such as

LRU, FIFO can be used to select burrers for replacement.

Associated with each buffer in the cache is a dirty bit, which can be

included in the directory entry to indicate whether or not the buffer has been

modified. When a page is first read from the database disk into a cache buffer, the

cache directory with the new disk page address, and the dirty bit is set to 0 (zero).

As soon as the buffer is modified, the dirty bit for the corresponding directory entry

is set to 1 (one). When the buffer contents are replaced from the cache, the contents

must first be written back to the corresponding disk page only if its dirty bit is 1.

Two main strategies can be employed when replacing a modified buffer back

to disk. The first strategy, known as in-place updating, writes the buffer to the

same original disk location, thus overwriting the old value of any changed data

items on disk. Hence, a single copy of each database disk block is maintained. The

second strategy, known as shadowing, writes an updated buffer at a different disk

location, so multiple versions of data items can be maintained.

In general, the old value of the data item before updating is called the before

image (BFIM), and the new value after updating is called the after image (AFIM).

If shadowing is used, both the BFIM and the AFIM can be kept on disk.

MCA Page 231

3. Write-Ahead Logging, Steal/No-Steal, and Force/No-Force

Write-Ahead Logging: In this protocol, the BFIM of the data item is recorded in

the appropriate log entry and that the log entry is flushed to disk before the BFIM

is overwritten with the AFIM in the database on disk.

Steal/No-steal:

No-Steal: If a cache buffer page updated by a transaction cannot be written to disk

before the transaction commits, the recovery method is called a no-steal approach.

Steal: if the recovery protocol allows writing an updated buffer before the

transaction commits, it is called steal.

Force/No-force: If all pages updated by a transaction are immediately written to

disk before the transaction commits, the recovery approach is called a force

approach. Otherwise, it is called no-force.

4. Checkpoints in the System Log and Fuzzy Checkpointing:

Checkpoints in the System Log: Another type of entry in the log is called a

checkpoint. The checkpoint consists of the following actions:

1. Suspend execution of transactions temporarily.

2. Force-write all main memory buffers that have been modified to disk.

3. Write a [checkpoint] record to the log, and force-write the log to disk.

4. Resume executing transactions.

Fuzzy Checkpointing: To reduce this delay, it is common to use a technique

called fuzzy check point.

In this technique, the system can resume transaction processing after a

[begin_checkpoint] record is written to the log without having to wait for step 2 to

finish. When step 2 is completed, an [end_checkpoint, …] record is written in the

log with the relevant information collected during checkpointing. The system

maintains a pointer to the valid checkpoint, which continues to point to the

previous checkpoint record in the log. Once step 2 is concluded, that pointer is

changed to point to the new checkpoint in the log.

MCA Page 232

5. Transaction Rollback and Cascading Rollback:

Transaction Rollback: If a transaction fails for whatever reason after updating the

database, it may be necessary to roll back the transaction.

If a transaction T is rolled back, any transaction S that has, read the value of

some data item X written by T must also be rolled back. Similarly, once S is rolled

back, any transaction R that has read the value of some data item Y written by S

must also be rolled back; and so on. This phenomenon is called cascading

rollback, and it can occur when the recovery protocol ensures recoverable

schedules but does not ensure strict or cascadeless schedules.

Understandably, cascading rollback can be complex and time-consuming. That

is why almost all recovery mechanisms are designed so that cascading rollback is

never required.

Recovery Based on Deferred Update

The deferred update thechniques do not physically update the database on disk

until after a transaction reaches its commit point, then the updates are recorded in

the database. It will not have changed the database in any way, so UNDO is not

needed. It may be necesay to REDO the effect of the operation.

We can state a typical deferred update protocol as follows:

1. A transaction cannot change the database on disk until it reaches its commit

point.

2. A transaction does not reach its commit point until all its update operations

are recorded in the log and the log is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging

(WAL) protocol. Because the database is never updated on disk until after the

transaction commits, there is never a need to UNDO any operations. Hence, this is

known as the NO-UNDO/REDO recovery algorithm. REDO is needed in case the

system fails after a transaction commits but before all its changes are recorded in

the database on disk.

MCA Page 233

Figure: An example of a recovery timeline to illustrate the effect of checkpointing.

When the checkpoint was taken at time t1, transaction T1 had committed,

whereas transactions T3 and T4 had not. Before the system crash at time t2, T3 and

T2 were committed but not T4 and T5.

According to the RDU_M method, there is no need to redo the write_item

operations of transaction T1—or any transactions committed before the last

checkpoint time t1.

The write_item operations of T2 and T3 must be redone, however, because

both transactions reached their commit points after the last checkpoint.

Transactions T4 and T5 are rolled back because none of their write_item

operations were recorded in the database on disk under the deferred update

protocol.

Recovery using Deferred Update in a Single-User Environment:

Procedure RDU-S: use two lists of transactions:

The committed transactions since the last check point, and the active

transactions. Apply the REDO operations to all the write_item operations of the

committed transactions from the log in the order in which they written to the log.

Restart the active transactions.

The REDO procedure is defined as follows:

Procedure REDO (WRITE_OP): Redoing a write_item operation

WRITE_OP consists of examining its log entry [write_item, T, X, new_value] and

setting the value of item X in the database to new_value, which is the after image

(AFIM).

MCA Page 234

Deferred Update with Concurrent Execution in a Multi user Environment:

Procedure RDU_M (NO-UNDO/REDO with checkpoints): Use two lists of

transactions maintained by the system; the committed transactions T since the last

checkpoint (commit list), and the active transactions T′ (active list). REDO all the

WRITE operations of the committed transactions from the log, in the order in

which they were written into the log. The transactions that are active and did not

commit are effectively canceled and must be resubmitted.

Recovery Techniques Based on Immediate Update

In these techniques, when a transaction issues an update command, the

database on disk can be updated immediately, without any need to wait for the

transaction to reach its commit point.

UNDO/REDO Recovery based on Immediate Update in a Single_User

Environment:

Procedure RIU_S:

1. Use two lists of transactions maintained by the system: the committed

transactions since the last checkpoint and the active transactions (atmost, one

transactionwill fall in this category because the sysem is single-user).

2. Undo all the write_item operations of the active transaction from the log, using

the UNDO procedure described below.

3. Redo the write_item operations of the committed transactions from the log, in

the order in which they were written into the log, using the REDO procedure

defined earlier.

UNDO/REDO Recovery based on Immediate Update with current execution:

Procedure RIU_M:

1. Use two lists of transactions maintained by the system: the committed

transactions since the last checkpoint and the active transactions.

2. Undo all the write_item operations of the active (uncommitted) transactions,

using the UNDO procedure. The operations should be undone in the reverse of the

order in which they were written into the log.

MCA Page 235

3. Redo all the write_item operations of the committed transactions from the log, in

the order in which they were written into the log.

Shadow Paging

Shadow paging considers the database to be made up of a number of fixedsize

disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n

entries is constructed, where the ith entry points to the ith database page on disk.

The directory is kept in main memory if it is not too large, and all references—

reads or writes—to database pages on disk go through it. When a transaction

begins executing, the current directory—whose entries point to the most recent or

current database pages on disk—is copied into a shadow directory. The shadow

directory is then saved on disk while the current directory is used by the transaction.

Figure: An example of shadow paging.

During transaction execution, the shadow directory is never modified. When a

write_item operation is performed, a new copy of the modified database page is

created, but the old copy of that page is not overwritten. The current directory entry

is modified to point to the new disk block.

From the above Figure illustrates the concepts of shadow and current

directories. For pages updated by the transaction, two versions are kept. The old

version is referenced by the shadow directory and the new version by the current

directory.

MCA Page 236

To recover from a failure during transaction execution, it is sufficient to discard

the current directory and reinstating the shadow directory. Thus the database

returns to its state prior to the transaction execution. Committing a transaction

corresponds to discarding the previous shadow directory.

The ARIES Recovery Algorithm

The ARIES recovery procedure consists of 3 main steps.

1. Analysis

2. REDO

3. UNDO

1. Analysis: Identifies the dirty pages in the buffer and the set of transactions

active at the time of the crash. The appropriate point in the log where the

REDO operation should start is also determined.

2. REDO: The REDO operation is applied only to committed transactions.

Certain information in the ARIES log will provide the start point for REDO,

from which REDO operations are applied until the end of the log is reached.

3. UNDO: The log is scanned backward and the operations of transactions that

were active at the time of the crash are undone in reverse order.

Log sequence number (LSN): Each log record has an associated log sequence

number in incremented, indicate the address of the log record on disk.

Previous LSN: Each log record has associated previous LSN for that transaction.

Two tables are needed for efficient recovery,

1. Transaction table

2. Dirty page table

Which are maintained by the transaction manager. When a crach occurs then table

are build in the analysis phase of recovery.

After a crach, the ARIES recovery manager take over information.

MCA Page 237

Analysis Phase: The analysis phase starts at the begin_checkpoint record and

proceeds to the end of the log. When the end_checkpoint record is encountered, the

Transaction Table and Dirty Page Table are accessed. During analysis, the log

records being analyzed may cause modifications to these two tables. After the

check point in the system log, each transaction is compared with transaction table

entries, if it is not in that transaction add to the transaction table, already exist

change Last_LSN to LSN in the log.

REDO phase: Find the smallest LSN, M of all the dirty pages in the dirty page

thable, which indicate the log position where ARIES ready to start REDO phase.

The REDO start at the log record with LSN=M and scans forward to the end of

log. For each change recorded in the log, the REDO algorithm would verify

whether or not the change has to be reapplied. Once the REDO phase is finished,

the database come prior of the failure.

UNDO pahse: The set of active transactions called the undo set identified in the

transaction table during the analysis phase. Now undo phase proceeds by scanning

bcakward from end of the log and undoing the appropriate actions. When this is

completed, the recovery process is finished.

Ex: There are 3 transactions T1,T2,T3.

Figure: An example of recovery in ARIES. (a) The log at point of crash. (b) The

Transaction and Dirty Page Tables at time of checkpoint. (c) The Transaction and

Dirty Page Tables after the analysis phase.

MCA Page 238

Suppose that a crash occurs at this point, the address associated

begin_checkpoint record is retrieved, which is location 4. The analysis phase starts

from location 4 until it reaches the end.

The end_checkpoint record contains the Transaction Table and Dirty Page

Table in Figure (b), and the analysis phase will further reconstruct these table as

shown in Figure (c).

When the analysis phase log record 6, a new entry for transaction T3 is made in

the Transaction Table and a new entry for page A is made in the Dirty Page Table.

MCA Page 239

After log record 8 is analyzed, the status of transaction T2 is changed to committed

in the Transaction Table.

For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the

REDO will start at log record 1 and proceed with the REDO of updates. In our ex,

the pages C,B,A will be read agin and the updates reapplied from the log. The

REDO phase completed.

Now the UNDO phase stars from the transactiontable, UNDO is applied only

to the active transaction T3. The UNDO phase starts at log entry 6 and proceeds

backward in the log.

Recovery in Multidatabase System

In some cases, a single transaction, may require access to multiple databases.

These databases may even be stored on different types of DBMS, for example,

some DBMSs may be relational, Object oriented, hierarchical, or network DBMSs.

To maintain the atomicity of a multidatabase transaction, it is necessary to have

a two-level recovery mechanism. A global recovery manager, or Coordinator,

and Local recovery manager are participated.

The coordinator usually follows a protocol called the two-phase commit

protocol, whose two phases can be stated as follows:

■ Phase 1: The coordinator sends a message prepare for commit to each participant

to get ready for committing the transaction. Each participating database receiving

that message will force-write all log records and needed information for local

recovery to disk and then send a ready to commit or OK signal to the coordinator.

If the local transaction cannot commit for some reason, the participating

database sends a cannot commit or not OK signal to the coordinator. If the

coordinator does not receive a reply from the database within a certain time out

interval, it assumes a not OK response.

■ Phase 2: If all participating databases reply OK, and the coordinator’s vote is

also OK, the transaction is successful, and the coordinator sends a commit signal

for the transaction to the participating databases.

Each participating database completes transaction commit by writing a [commit]

entry for the transaction in the log and permanently updating the database.

MCA Page 240

On the other hand, if one or more of the participating databases or the

coordinator have a not OK response, the transaction has failed, and the coordinator

sends a message to roll back or UNDO the local effect of the transaction to each

participating database. This is done by undoing the local transaction operations,

using the log.

Database Backup and Recovery from Catastrophic Failures

The recovery manager of a DBMS must also be equipped to handle more

catastrophic failures such as disk crashes. The main technique used to handle such

crashes is a database backup, in which the whole database and the log are

periodically copied onto a cheap storage medium such as magnetic tapes or other

large capacity offline storage devices.

In case of a catastrophic system failure, the latest backup copy can be reloaded

from the tape to the disk, and the system can be restarted.

Data from critical applications such as banking, insurance, stock market, and

other databases is periodically backed up in its entirety and moved to physically

separate safe locations.

To avoid losing all the effects of transactions that have been executed since the

last backup, it is customary to back up the system log at more frequent intervals

than full database backup by periodically copying it to magnetic tape. Therefore,

users do not lose all transactions they have performed since the last database

backup.

Hence, to recover from disk failure, the database is first recreated on disk from

its latest backup copy on tape. Following that, the effects of all the committed

transactions whose operations have been recorded in the backed-up copies of the

system log are reconstructed.
